Self-consistent numerical evaluation of concrete shielding activation for proton therapy systems

Author:

Ramoisiaux E.ORCID,Tesse R.ORCID,Hernalsteens C.ORCID,Boogert S. T.ORCID,Gnacadja E.ORCID,Nevay L. J.ORCID,Pauly N.ORCID,Shields W.ORCID,Stichelbaut F.ORCID,Vanwelde M.ORCID

Abstract

AbstractDue to the advancement of proton therapy for cancer treatment, there has been a worldwide increase in the construction of treatment facilities. Therapy centres are often coupled with clinical, biological or material-science research programs. Research activities require proton beams at energies spanning an extensive range with higher beam currents and longer irradiation times than clinical conditions. Additionally, next-generation proton therapy systems are evolving towards more compact designs. In addition to the increased centres’ workloads, reducing the system in size produces a more significant number of secondary particles per unit volume and time. Therefore, the activation level of materials constituting those future proton therapy centres is expected to be higher, increasing the ambient dose and the amount of radioactive waste collected at the end of a centre’s lifetime. These operating conditions pose new challenges for the shielding design and the reduction of the concrete activation. To tackle them, we propose a novel approach to seamlessly simulate all the processes relevant for the evaluation of the concrete shielding activation using, as an illustration, the Ion Beam Applications Proteus$$^\circledR $$ ® One system. A realistic model of the system is developed using Beam Delivery Simulation (BDSIM), a Geant4-based particle tracking code. It allows a single model to simulate primary and secondary particle tracking in the beamline, its surroundings, and all particle-matter interactions. The code system and library database FISPACT-II allows the computation of the shielding activation by solving the rate equations using ENDF-compliant group library data for nuclear reactions, particle-induced or spontaneous fission yields, and radioactive decay. As input, FISPACT-II is provided with the secondary particle fluences scored using the BDSIM Monte Carlo simulations. This approach is applied to the proton therapy research centre of Charleroi, Belgium. Results compare the evolution of the clearance level and the long-lived nuclide concentrations throughout the facility lifetime when using regular concrete or the newly developed Low Activation Concrete (LAC). A comparison with the initial shielding dimensioning has been performed for all the shielding walls to validate the methodology and highlight the clear benefits of integrating LAC inserts in the shielding design. The effectiveness of coupling BDSIM and FISPACT-II gives a glimpse of the possibility of a complete activation study following the actual workloads of the centre, allowing a better assessment of the shielding activation level at any time of the facility lifespan.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3