Learning to increase matching efficiency in identifying additional b-jets in the $$\text {t}\bar{\text {t}}\text {b}\bar{\text {b}}$$ process

Author:

Jang CheongjaeORCID,Ko Sang-Kyun,Choi Jieun,Lim Jongwon,Noh Yung-Kyun,Kim Tae Jeong

Abstract

AbstractThe$$\text {t}\bar{\text {t}}\text {H}(\text {b}\bar{\text {b}})$$tt¯H(bb¯)process is an essential channel in revealing the Higgs boson properties; however, its final state has an irreducible background from the$$\text {t}\bar{\text {t}}\text {b}\bar{\text {b}}$$tt¯bb¯process, which produces a top quark pair in association with a b quark pair. Therefore, understanding the$$\text {t}\bar{\text {t}}\text {b}\bar{\text {b}}$$tt¯bb¯process is crucial for improving the sensitivity of a search for the$$\text {t}\bar{\text {t}}\text {H}(\text {b}\bar{\text {b}})$$tt¯H(bb¯)process. To this end, when measuring the differential cross section of the$$\text {t}\bar{\text {t}}\text {b}\bar{\text {b}}$$tt¯bb¯process, we need to distinguish the b-jets originating from top quark decays and additional b-jets originating from gluon splitting. In this paper, we train deep neural networks that identify the additional b-jets in the$${\text {t}}{\bar{\text {t}}}{\text {b}}{\bar{\text {b}}}$$tt¯bb¯events under the supervision of a simulated$$\text{t}\bar{\text{t}}\text{b}\bar{\text{b}}$$tt¯bb¯event data set in which true additional b-jets are indicated. By exploiting the special structure of the$$\text {t}\bar{\text {t}}\text {b}\bar{\text {b}}$$tt¯bb¯event data, several loss functions are proposed and minimized to directly increase matching efficiency, i.e., the accuracy of identifying additional b-jets. We show that, via a proof-of-concept experiment using synthetic data, our method can be more advantageous for improving matching efficiency than the deep learning-based binary classification approach presented in [1]. Based on simulated$$\text {t}\bar{\text {t}}\text {b}\bar{\text {b}}$$tt¯bb¯event data in the lepton+jets channel from pp collision at$$\sqrt{s}$$s= 13 TeV, we then verify that our method can identify additional b-jets more accurately: compared with the approach in [1], the matching efficiency improves from 62.1$$\%$$%to 64.5$$\%$$%and from 59.9$$\%$$%to 61.7$$\%$$%for the leading order and the next-to-leading order simulations, respectively.

Funder

IITP

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3