Conditions for obtaining positronium Bose–Einstein condensation in a micron-sized cavity

Author:

Asaro Marcus X.ORCID,Herrera Steven,Fuentes-Garcia MelinaORCID,Cecchini Gabriel G.ORCID,Membreno Erick E.ORCID,Greaves Rod G.,Mills Allen P.ORCID

Abstract

Abstract The quest for making a triplet positronium (Ps) Bose–Einstein condensate confined in a micron-sized cavity in a material such as porous silica faces at least three interrelated problems: (1) About $$10^7$$ 10 7 spin polarized Ps atoms must be injected into a small cavity within a porous solid material without vaporizing it. (2) It is known that Ps atoms confined in 30–100 nm diameter cavities in porous silica do not remain in the gas phase, but become stuck to the cavity walls at room temperature (Cooper et al., Phys. Rev. B 97:205302, 2018). (3) Cooling a gas of Ps atoms to cryogenic temperatures by energy exchange with the walls would be a very slow process (Saito and Hyodo, in: Surko, Gianturco (eds) New Directions in Antimatter Chemistry and Physics, Springer Dordrecht, Netherlands, 2001) because of the relatively low collision rate with the walls and the large mismatch between the masses of the Ps and the wall atoms. A possible solution of these difficulties is presented, based on cooling the implanted positrons in an isotopically pure diamond single crystal target, subsequent saturating of the wall Ps coverage so that a substantial portion of the Ps will be in the gaseous state, and thermalizing the gas-phase Ps via collisions with the low effective mass wall Ps. A design process for the target material is outlined as well, including preliminary results in porous cavity fabrication using focused ion beam milling. Graphical abstract

Funder

US National Science foundation

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3