Spatial distribution of solar PV deployment: an application of the region-based convolutional neural network

Author:

Kim Serena Y.ORCID,Ganesan Koushik,Soderman Crystal,O’Rourke Raven

Abstract

AbstractSolar photovoltaic (PV) deployment plays a crucial role in the transition to renewable energy. However, comprehensive models that can effectively explain the variations in solar PV deployment are lacking. This study aims to address this gap by introducing two innovative models: (i) a computer vision model that can estimate spatial distribution of solar PV deployment across neighborhoods using satellite images and (ii) a machine learning (ML) model predicting such distribution based on 43 factors. Our computer vision model using Faster Regions with Convolutional Neural Network (Faster RCNN) achieved a mean Average Precision (mAP) of 81% for identifying solar panels and 95% for identifying roofs. Using this model, we analyzed 652,795 satellite images from Colorado, USA, and found that approximately 7% of households in Colorado have rooftop PV systems, while solar panels cover around 2.5% of roof areas in the state as of early 2021. Of our 16 predictive models, the XGBoost models performed the best, explaining approximately 70% of the variance in rooftop solar deployment. We also found that the share of Democratic party votes, hail and strong wind risks, median home value, the percentage of renters, and solar PV permitting timelines are the key predictors of rooftop solar deployment in Colorado. This study provides insights for business and policy decision making to support more efficient and equitable grid infrastructure investment and distributed energy resource management.

Funder

University of Colorado Denver

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Science Applications,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3