Predicción del porcentaje de proteína total a partir de muestreos parciales y ajuste de efectos medioambientales

Author:

Ceballos B Maria C,Correa L Guillermo,Echeverri Z Julián

Abstract

RESUMENObjetivo. Hallar una ecuación matemática para estimar el porcentaje de proteína promedio total (PPPT), a partir de la producción parcial (PP) y otros factores ambientales que afectan esta característica. Materiales y métodos. La investigación fue realizada en tres fincas lecheras del departamento de Antioquia, Colombia. Se muestrearon 182 vacas Holstein; la captura de información se llevó a cabo mediante muestreos mensuales de dos ordeños diarios. Se tomó información relacionada con hora de entrada al ordeño, producción de leche, número de parto, época del parto y los días en lactancia. El análisis estadístico se realizó mediante un modelo de regresión múltiple donde se determinaron las fuentes de variación significativas sobre el porcentaje de proteína total del día. A partir de los coeficientes de regresión estimados se generó un modelo de predicción para la variable antes mencionada. Resultados. Los efectos número de parto, días de lactancia, producción de proteína parcial (pm), producción de leche, expresión cuadrática de la producción de proteína parcial (am), producción de proteína parcial (am) y el intervalo entre ordeños tuvieron un efecto significativo (p<0.05) sobre el porcentaje de proteína total del día; a partir de estos efectos se generaron dos modelos de predicción de PPPT a partir de un muestreo parcial (am y pm). Conclusiones. El PPPT está afectado por diversos factores medioambientales que deben ser ajustados para los modelos de predicción. Estos modelos pueden ser aplicados para ajustar datos de un muestreo parcial (am o pm) y ajustarlos posteriormente a un valor de producción de proteína promedio día, en los programas de mejoramiento genético.

Publisher

Universidad de Cordoba

Subject

General Veterinary,Animal Science and Zoology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3