Recognition of Russian-style road signs using neural networks

Author:

Shulga Tatiana Erikovna1,Solopekin Dmitrii Andreevich2

Affiliation:

1. Yuri Gagarin State Technical University of Saratov

2. Yuri Gagarin State Technical University of Saratov

Abstract

The problem of creating a model for recognizing objects in images and possible ways to solve it is considered using the example of working with Russian road signs according to ISS R 52290-2004. The analysis of methods for constructing predictive models of image recognition and existing solutions in the public domain is carried out. A convolutional neural network is used as the basic model. A road sign recognition model based on the YOLOv7 transfer network has been developed as a result of training on a dataset from the Russian RTSD road sign image database. The metrics for evaluating the quality of the created model are analyzed and described. The created model meets the quality requirements for objective metrics, allows you to make forecasts taking into account specific situations in different weather conditions and at different times of the day for 146 different predefined classes. The characteristic of the class is the number of the sign according to ISS R 52290-2004. The model has a prediction accuracy of 0.847 with a prediction completeness of 0.811. The average average prediction accuracy of the model is 0.884 when tested on 493 images from the test sample. The test sample does not overlap with the training sample, which consists of 1,842 images. The developed model is published in the public domain both for use for scientific purposes and for further further education. This provides an opportunity for researchers in this field to familiarize themselves with a practical example of the implementation of the model, to supplement or improve it if necessary. The method described in this paper will allow researchers in various subject areas to find a solution that allows them to overcome resource constraints when creating a high-performance and high-quality predictive recognition model.

Publisher

Astrakhan State Technical University

Reference23 articles.

1. Юрин И. В., Лебедев Г. В., Лившиц И. И. Перспективы использования безэкипажных транспортных судов в морях арктического бассейна России // Науч.-техн. вестн. информац. технологий, механики и оптики. 2021. № 1. С. 73–84., Iurin I. V., Lebedev G. V., Livshits I. I. Perspektivy ispol'zovaniia bezekipazhnykh transportnykh sudov v moriakh arkticheskogo basseina Rossii [Prospects for the use of unmanned transport vessels in the seas of the Arctic basin of Russia]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2021, no. 1, pp. 73-84.

2. Дремлюга Р. И., Крипакова А. В., Яковенко А. А. Регулирование тестирования и использования беспилотного автотранспорта: опыт США // Журн. зарубеж. законодательства и сравнит. правоведения. 2020. № 3. C. 68–85., Dremliuga R. I., Kripakova A. V., Iakovenko A. A. Regulirovanie testirovaniia i ispol'zovaniia bespilotnogo avtotransporta: opyt SShA [Regulation of testing and use of self-driving vehicles: the US experience]. Zhurnal zarubezhnogo zakonodatel'stva i sravnitel'nogo pravovedeniia, 2020, no. 3, pp. 68-85.

3. Короткова Ю. А. Особенности восприятия информации водителем высокоавтоматизированного транспортного средства // Безопасность дорожного движения. 2022. № 3. C. 48–51., Korotkova Iu. A. Osobennosti vospriiatiia informatsii voditelem vysokoavtomatizirovannogo transportnogo sredstva [Features of information perception by the driver of a highly automated vehicle]. Bezopasnost' dorozhnogo dvizheniia, 2022, no. 3, pp. 48-51.

4. Акатьев Я. А., Латыпов А. Р. Анализ особенностей алгоритмов машинного обучения в автоматизированных системах вождения // E-Scio. 2022. № 1 (64). C. 641–655., Akat'ev Ia. A., Latypov A. R. Analiz osobennostei algoritmov mashinnogo obucheniia v avtomatizirovannykh sistemakh vozhdeniia [Analysis of the features of machine learning algorithms in automated driving systems]. E-Scio, 2022, no. 1 (64), pp. 641-655.

5. Kshitij Dhawan, Srinivasa Perumal R., Nadesh R. K. Identification of traffic signs for advanced driving assistance systems in smart cities using deep learning // Multimedia Tools and Applications. 2023. V. 82. P. 26465–26480., Kshitij Dhawan, Srinivasa Perumal R., Nadesh R. K. Identification of traffic signs for advanced driving assistance systems in smart cities using deep learning. Multimedia Tools and Applications, 2023, vol. 82, pp. 26465-26480.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3