Affiliation:
1. Samara State Technical University
Abstract
The design of robotic and unmanned vehicles includes a virtual commissioning stage that provides an analysis of the operation of objects using digital twins. Conducting a large number of experiments on models leads to the use of methods for evaluating the results obtained to choose the best design solution. A method of multifactorial anal-ysis of the efficiency of the complex of autonomous vehicles (AV) for agro-industrial purposes is proposed. Multivariate analysis is performed at the virtual commissioning stage in order to plan early maintenance and repair activities. The paper uses the method of analyzing the operating environment for a comparative assessment of various operating scenarios. The method is based on solving a complex of optimization problems of linear programming. A formal description of virtual test scenarios is proposed. The method of multifactorial analysis is implemented in the process of virtual tests using optimal purpose system models and AV simulation. A procedure for virtual AV tests has been developed, including step-by-step modeling and multivariate analysis. The sets of input and output key parameters of the AV and analyzed scenarios are determined. It is proposed to perform two consecutive efficiency assessment tasks. The first task is to compare the effectiveness of individual AV and determine the limits of their effectiveness. The solution of the second task makes it possible to evaluate the effectiveness of AV system operation scenarios. The target values of changes in the key parameters of the AV and operating scenarios are obtained, leading to an increase in the efficiency of operation and maintenance. Conducting a multifactorial analysis of the results of virtual tests allows you to formulate requirements and recommendations for the design of AV maintenance systems.
Publisher
Astrakhan State Technical University
Reference16 articles.
1. Möller D. P. F., Vakilzadian H., Haas R. E. From In-dustry 4.0 towards Industry 5.0 // Proc. 2022 IEEE Interna-tional Conference on Electro Information Technology (Mankato, MN, USA). IEEE Xplore. 2022. P. 61–68., Möller D. P. F., Vakilzadian H., Haas R. E. From In-dustry 4.0 towards Industry 5.0. Proc. 2022 IEEE Interna-tional Conference on Electro Information Technology (Mankato, MN, USA). IEEE Xplore, 2022, pp. 61-68.
2. Бабкин А. В., Федоров А. А., Либерман И. В., Клачек П. М. Индустрия 5.0: понятие, формирование и развитие // Экономика промышленности. Russian Journal of Industrial Economics. 2021. Т. 14 (4). С. 375–395., Babkin A. V., Fedorov A. A., Liberman I. V., Klachek P. M. Industriia 5.0: poniatie, formirovanie i razvitie [Industry 5.0: concept, formation and development]. Ekonomika promyshlennosti. Russian Journal of Industrial Economics, 2021, vol. 14 (4), pp. 375-395.
3. Novak P., Kadera P., Wimmer M. Model-based engineering and virtual commissioning of cyber-physical manufacturing systems – Transportation system case study // Proc. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol. IEEE Xplore. 2017. P. 1–4., Novak P., Kadera P., Wimmer M. Model-based engineering and virtual commissioning of cyber-physical manufacturing systems – Transportation system case study. Proc. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol. IEEE Xplore, 2017, pp. 1-4.
4. Орлов С. П., Бизюкова Е. Е., Яковлева А. Е. Виртуальные испытания агрегатов для виртуального ввода в производство роботизированного автомобиля // Вестн. Самар. гос. техн. ун-та. Сер.: Технические науки. 2021. Т. 29 (1). С. 46–57., Orlov S. P., Biziukova E. E., Iakovleva A. E. Virtu-al'nye ispytaniia agregatov dlia virtual'nogo vvoda v pro-izvodstvo robotizirovannogo avtomobilia [Virtual testing of units for virtual commissioning of a robotic car]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Tekhnicheskie nauki, 2021, vol. 29 (1), pp. 46-57.
5. Щербаков М. В., Сай Ван К. Архитектура системы предсказательного технического обслуживания сложных многообъектных систем в концепции Индустрии 4.0 // Программные продукты и системы. 2020. № 2. С. 186–194., Shcherbakov M. V., Sai Van K. Arkhitektura sistemy predskazatel'nogo tekhnicheskogo obsluzhivaniia slozhnykh mnogoob"ektnykh sistem v kontseptsii Industrii 4.0 [The architecture of the predictive maintenance system for complex multi-object systems in the concept of Industry 4.0]. Programmnye produkty i sistemy, 2020, no. 2, pp. 186-194.