Minimizing the complexity of performing a set of auxiliary actions for machining operations

Author:

Khrustaleva Irina Nikolaevna1,Khrustalev Michail Borisovich2,Khokhlovskiy Vladimir Nikolaevich3,Chernyh Larisa Georgievna1,Shkodyrev Vyacheslav Petrovich4

Affiliation:

1. Peter the Great St. Petersburg Polytechnic University

2. Peter the Great St. Petersburg Polytechnic University

3. Peter the Great St. Petersburg Polytechnic University

4. Peter the Great St. Petersburg Polytechnic University

Abstract

Abstract. The technological process of manufacturing mechanical engineering products using metal-cutting machines is a structurally complex process. This process can be described by the combination of two types of actions: the working stroke, which results in a change in the structure and properties of the workpiece, and an auxiliary transition, the task of which is to prepare the technological system for the execution of the working process. The execution of auxiliary transitions does not entail a change in the structure and properties of the product, but leads to an increase in the complexity of its manufacture, therefore, increasing the efficiency of technological processes of mechanical processing largely depends on optimizing the complexity of performing a complex of auxiliary transitions. The purpose of the work is to develop a model for optimizing the parameters of a complex of auxiliary transitions for machining operations. The structure of the control object “Technological system” is described, within which two subcategories of control objects are defined: the control object “Technological equipment” and the control object “Wearable equipment”. Hypergraphs of changes in their intermediate states are presented for these subcategories of control objects. According to the presented models, the subcategory of the control object “Technological equipment” has 4 levels of control, the subcategory of the control object “Wearable tooling” has 3 levels of control. Lists of single and vector optimization criteria have been formed for the intermediate states of control objects. A description of a set of actions for the transition of control objects from the (i – 1) state to thei-estate is presented. A list of control parameters has been defined for each subcategory of the control object. The use of the presented model contributes to increasing the efficiency of the technological process by optimizing the values of the parameters of the complex of auxiliary actions at the stage of technological preparation of production.

Publisher

Astrakhan State Technical University

Reference15 articles.

1. Kostenko D., Shkodyrev V., Onufriev V. Solving Multicriteria Optimization Problem for an Oil Refinery Plant // Proceedings of International Scientific Conference on Telecommunications, Computing and Control. 2021. P. 131–140., Kostenko D., Shkodyrev V., Onufriev V. Solving Multicriteria Optimization Problem for an Oil Refinery Plant. Proceedings of International Scientific Conference on Telecommunications, Computing and Control, 2021. Pp. 131-140.

2. Костенко Д. А., Онуфриев В. А., Шкодырев В. П. Многокритериальная оптимизация ректификационного процесса по алгоритму SPEA2 // Науч.-техн. ведом. СПбГПУ. Информатика. Телекоммуникации. Управление. 2019. Т. 12, № 2. С. 39–49., Kostenko D. A., Onufriev V. A., Shkodyrev V. P. Mnogokriterial'naia optimizatsiia rektifikatsionnogo protsessa po algoritmu SPEA2 [Multi-criteria optimization of the rectification process using the SPEA2 algorithm]. Nauchno-tekhnicheskie vedomosti SPbGPU. Informatika. Telekommunikatsii. Upravlenie, 2019, vol. 12, no. 2, pp. 39-49.

3. Kostenko D., Arseniev D., Shkodyrev V., Onufriev V. Pareto optimization in oil refinery // Data Mining and Big Data: 5th International Conference, Proceedings. Springer Nature, 2020. P. 26–33., Kostenko D., Arseniev D., Shkodyrev V., Onufriev V. Pareto optimization in oil refinery. Data Mining and Big Data: 5th International Conference, Proceedings. Springer Nature, 2020. Pp. 26-33.

4. Yassine H. M., Shkodyrev V. The intelligent control system of optimal oil manufacturing production // Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems. 2020. P. 131–135., Yassine H. M., Shkodyrev V. The intelligent control system of optimal oil manufacturing production. Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems, 2020. Pp. 131-135.

5. Иванов В. К. Интегрированная система моделирования и управления возможностями предприятия // Автоматизация и современные технологии. 2012. № 7. С. 34–39., Ivanov V. K. Integrirovannaia sistema modelirovaniia i upravleniia vozmozhnostiami predpriiatiia [Integrated system for modeling and managing enterprise capabilities]. Avtomatizatsiia i sovremennye tekhnologii, 2012, no. 7, pp. 34-39.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3