Laser Remote Sensing Method of Carbon Monoxide Emissions Detection

Author:

Belov M. L.1,Drachennikova Ya. E.1,Gorodnichev V. A.1

Affiliation:

1. Bauman Moscow State Technical University, Moscow

Abstract

Monitoring of atmospheric gas pollution is one of the most important environmental target. Laser methods are the most effective for remote operational monitoring of atmospheric pollution.One of the most important air pollutants is carbon monoxide.The article analyzes the possibility of laser remote sensing method of carbon monoxide emissions detection in atmosphere.The information parameter measured by the remote sensing laser gas analyzer was assessed for absorption band of carbon monoxide near 2,3 μm.The information parameter that can be used for monitoring monoxide emissions is the ratio of the power of laser signals at the wavelengths 4295 cm-1 and 4370 cm-1.Results of calculations of the information parameter for different sizes of emissions (from 1 m to 100 m) and different content of carbon monoxide in the emission (from 0.01 % to 10 %) were showed.Comparing the information parameter R with its background value shows that carbon monoxide emissions can be monitored.Mathematical modeling was performed for quantitative estimation the reliability of detecting carbon monoxide emissions.The probability of correctly emission detecting (emission detecting when there is one) and the probability of false alarms (emission detecting when there is none) were calculated.Mathematical modelling shows that a laser gas analyzer allows us to detect the carbon monoxide emissions with correct detection probability not less 0,845 and false alarm probability no more 0,243 for carbon monoxide emissions with gas concentration not less  0,1 %  and dimension of emissions cloud not less 10 m. For carbon monoxide emissions with gas concentration not less 1 % and dimension of emissions cloud not less 5 m a laser gas analyzer allows us to detect the carbon monoxide emissions with correct detection probability not less  0,999 and false alarm probability no more 0,001.

Publisher

JSC Radio Engineering Corporation - Vega

Subject

Polymers and Plastics,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3