Hyperbolic Number Forms of Euler-Savary Equation

Author:

ÇAĞLAR Duygu1,GÜRSES Nurten2

Affiliation:

1. YILDIZ TEKNİK ÜNİVERSİTESİ

2. yıldız teknik üniversitesi

Abstract

This study deals with hyperbolic number forms of Euler-Savary Equation (ESE) to find either the four special points on the pole ray. While obtaining the hyperbolic ESE forms, one-parameter planar motion is considered according to the osculating circles contacting at three infinitesimally close points. This approach with the hyperbolic number method gives more detailed information than the traditional method. As a final part, examples are given to show the utility of the practical way in the application.

Publisher

International Electronic Journal of Geometry, Person (Kazim ILARSLAN)

Subject

Applied Mathematics,Geometry and Topology,Mathematical Physics

Reference35 articles.

1. Erdman A. G., Sandor G. N.: Mechanism Design Analysis and Synthesis. Prentice-Hall Inc (1997).

2. Hall A. S.: Kinematics and Linkage Design. Waveland Press Inc (1986).

3. Rothbart H., Brown T. H.: Mechanical Design Handbook, Measurement, Analysis, and Control of Dynamic Systems. McGraw-Hill Education (2006).

4. Hartenberg R., Danavit J.: Kinematic Synthesis of Linkages. New York: McGraw-Hill (1964).

5. Blaschke W., Müller H. R.: Ebene Kinematik. Verlag Von R. Oldenbourg, München (1956).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3