Directions of Development of Intelligent Real Time Video Systems

Author:

Boyun Vitaliy

Abstract

Real time video systems play a significant role in many fields of science and technology.  The range of their applications is constantly increasing together with requirements to them, especially it concerns to real time video systems with the feedbacks. Conventional fundamentals and principles of real-time video systems construction are extremely redundant and do not take into consideration the peculiarities of real time processing and tasks, therefore they do not meet the system requirements neither in technical plan nor in informational and methodical one. Therefore, the purpose of this research is to increase responsiveness, productivity and effectiveness of real time video systems with a feedback during the operation with the high-speed objects and dynamic processes. The human visual analyzer is considered as a prototype for the construction of intelligent real time video systems. Fundamental functions, structural and physical peculiarities of adaptation and processes taking place in a visual analyzer relating to the information processing, are considered. High selectivity of information perception and wide parallelism of information processing on the retinal neuron layers and on the higher brain levels are most important peculiarities of a visual analyzer for systems with the feedback. The paper considers two directions of development of intelligent real time video systems. First direction based on increasing intellectuality of video systems at the cost of development of new information and dynamic models for video information perception processes, principles of control and reading parameters of video information from the sensor, adapting them to the requirements of concrete task, and combining of input processes with data processing. Second direction is associated with the development of new architectures for parallel perception and level-based processing of information directly on a video sensor matrix. The principles of annular and linear structures on the neurons layers, of close-range interaction and specialization of layers, are used to simplify the neuron network.

Publisher

Archyworld Publishing, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3