Abstract
We study certain type of convolution sums involving an arbitrary arithmetic function f, which it is applied to Ramanujan’s tau function when f coincides with the sum of divisors function.
Reference10 articles.
1. Ewell, J. A. (1984). A Formula for Ramanujan’s Tau Function. Proceedings of the American Mathematical Society, 91(1), 37–40. https://doi.org/10.2307/2045264
2. Ewell, J.A. (1984). A formula for Ramanujan’s tau function. Proceedings of American Mathematic Society, 91(1), 37-40.
3. Gallardo, L. (2010). On some Formulae for Ramanujan's tau Function. Revista Colombiana de Matemáticas, 44, 103-112.
4. Grove, A. (1991). An introduction to the Laplace transform and the Z-transform, Prentice-Hall, London.
5. Lanphier, D. (2004). Maass operators and van der Pol-type identities for Ramanujan's tau function. Acta Arithmetica - ACTA ARITHMET, 113, 157-167. http://doi.org/10.4064/aa113-2-3