Nonlinear Control Systems Design by Transformation Method

Author:

Gaiduk A. R.1

Affiliation:

1. Southern Federal University

Abstract

The analytical approaches to design of nonlinear control systems by the transformation of the nonlinear plant equations into quasilinear forms or into Jordan controlled form are considered. Shortly definitions of these forms and the mathematical expressions necessary for design of the control systems by these methods are submitted. These approaches can be applied if the plant’s nonlinearities are differentiable, the plant is controllable and the additional conditions are satisfied. Procedure of a control system design, i.e. definition of the equations of the control device, in both cases is completely analytical. Desirable quality of transients is provided with that, that corresponding values are given to roots of the characteristic equations of some matrixes by calculation of the nonlinear control. The proposed methods provide asymptotical stability of the equilibrium in a bounded domain of the state space or its global stability and also desirable performance of transients. Performance of the nonlinear plants equations in the quasilinear form has no any complexities, if the mentioned above conditions are satisfied. The transformation of these equations to the Jordan controlled form very much often is reduced to change of the state variables designations of the plants. The suggested methods can be applied to design of control systems by various nonlinear technical plants ship-building, machine-building, aviation, agricultural and many other manufactures. Examples of the control systems design by the proposed analytical methods are given.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Hybrid Control System for Nonaffine Plants;Lecture Notes in Computer Science;2023

2. Tracked Robot Motion Control System;Cyber-Physical Systems Engineering and Control;2023

3. On the Global Stability of Nonlinear Hurwitz Control Systems;IEEE Transactions on Automation Science and Engineering;2022

4. The Multiplicative-Isolating Principle of Significantly Nonlinear Mathematical Models Creation;Studies in Systems, Decision and Control;2021

5. Application of quasilinear and CGA models for designing significantly nonlinear control systems;E3S Web of Conferences;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3