Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses

Author:

Ahrami O.1ORCID,Javaheri Koupaei H.1ORCID,Ahangari K.2ORCID

Affiliation:

1. Department of Civil Engineering, Science and Research Branch, Islamic Azad University

2. Department of Mining Engineering, Science and Research Branch, Islamic Azad University

Abstract

The anisotropy in the deformational behavior of blocky rock masses has been comprehensively investigated. The uniaxial deformation modulus was selected as the key parameter. This modulus is generally anisotropic and depends on the loading direction, as well as on the properties of the intact rock, joints, and joint setting. Representative volumes of blocky rock masses were numerically simulated using the discrete element method and were loaded uniaxially in various directions. Subsequently, the failure mode and the deformation modulus were studied for different loading directions and various relative joint settings. A new nonlinear, stress- dependent stiffness matrix for joints was introduced, incorporating the surface conditions of the joints in terms of the Joint Roughness Coefficient (JRC) and the properties of the intact rock materials in terms of the Uniaxial Compressive Strength (UCS). The results of the assessments are presented in the form of rose diagrams, showing variations in the deformation modulus of the blocky rock mass that depend on the joint’s JRC, the intact rock’s UCS, and the structure of the rock mass in term of the relative joint angle. Also, the expected degree of anisotropy for various joint surface conditions and uniaxial compressive strengths of intact rock were introduced. In the Geological Strength Index (GSI) table, results are classified such that assigning a value to the JRC for each class of joint surface conditions allows for the corresponding deformation modulus and degree of anisotropy. According to this chart, it is deduced that the effect of joint roughness on the deformation modulus of blocky rock masses is greater than that of the intact rock UCS. The results support the hypothesis that a blocky rock mass has a critical strain that is independent of the loading angle (θ) and the orientation of the third joint set (α).

Publisher

National University of Science and Technology MISiS

Reference37 articles.

1. Singh B. Continuum characterization of jointed rock masses: Part I – The constitutive equations. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1973;10(4):311–335. https://doi.org/10.1016/0148-9062(73)90041-7

2. Gerrard C. M. The equivalent elastic properties of simplified and jointed rock masses. In: Beer G., Brooker J. R., Carter J. P. (Eds.) Proceedings of the 17th International Conference on Computer Methods and Advances in Geomechanics. May 6–10, 1991. Cairns, Australia. Rotterdam: A. A. Balkemam, Brookfield; 1991. Pp. 333–337.

3. Oda M. An experimental study of the elasticity of mylonite rock with random cracks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1988;25:59–69.

4. Amadei B., Savage W. Z. Effect of joints on rock mass strength and deformability. In: Hudson J. A. (Ed.) Comprehensive Rock Engineering – Principle, Practice and Projects. Vol. 1. Oxford, UK: Pergamon; 1993. Pp. 331–365.

5. Kulhawy F. H. Geomechanical model for rock foundation settlement. Journal of the Geotechnical Engineering Division. 1978:104(2):211–227. https://doi.org/10.1061/AJGEB6.0000582

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3