Influence of laser spot size on structure and properties of high-temperature CompoNIAL-M5-3 alloy produced by selective laser melting

Author:

Kaplanskii Yu. Yu.1ORCID,Ageev M. I.1ORCID,Bychkova M. Ya.1ORCID,Fadeev A. A.2ORCID,Levashov E. A.1ORCID

Affiliation:

1. National University of Science and Technology “MISIS”

2. National University of Science and Technology “MISIS”; Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Abstract

The CompoNiAl-M5-3 high-temperature alloy based on nickel monoaluminide was obtained by selective laser melting (SLM) of a spheroidized powder with particle size in the range of 20 – 45 μm. The powder was manufactured using an integral technology including self-propagating high-temperature synthesis (SHS), briquette grinding, sieve and air classification followed with spheroidization of powder particles in a thermal plasma flow and ultrasonic purification of spheroidized particles from nanofraction. Using parametric studies, the SLM modes were tested on SLM 280H and TruPrint 1000 machines. Mechanical tests of the samples were carried out using the uniaxial compression scheme with the strain rate dε/dt = 10–4 s–1 in the temperature range 1023 – 1273 K. Scanning and transmission electron microscopy methods were used to study the influence of laser spot size on the evolution of microstructure and thermomechanical properties of the SLM-consolidated material in comparison with that obtained by hot isostatic pressing (HIP). The authors established the effect of HIP + HT (aging in vacuum) post-treatment on the structure and mechanical properties of the material. The yield strength at 1073 K of the alloy built on the additive machine with a laser spot diameter of 38 μm after SLM + HIP + HT was 500 MPa, which exceeded the yield strength of the HIP-samples by 220 MPa.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3