Preliminary assessment of the possibility to use large-diameter pipes of Х52 steel for transportation of pure gaseous hydrogen under pressure

Author:

Pyshmintsev I. Yu.1,Gizatullin A. B.1,Devyaterikova N. A.1,Laev K. A.1,Tsvetkov A. S.2,Al’khimenko A. A.2ORCID,Shaposhnikov N. O.2,Kurakin M. K.2

Affiliation:

1. JSC “TMK”

2. Peter the Great St. Petersburg Polytechnic University

Abstract

To assess resistance to hydrogen embrittlement caused by the presence of hydrogen in the transported product, and, accordingly, suitability of pipes for hydrogen transport, the base metal of large-diameter pipes of X52 strength class manufactured by JSC “ChelPipe” (part of the PJSC “TMK” group of companies) was studied. The work included the study of pure gaseous hydrogen effect under pressure up to 10 MPa on change in mechanical characteristics of the base metal of large-diameter pipes (LDP) during preliminary hydrogen charging for various time periods in a stationary autoclave under pressure, and during simultaneous loading with a slow strain rate (SSRT) under expected operating conditions. Results of the X52 LDP metal study show that there is no significant impact on the effect of gaseous hydrogen under pressure for up to 144 hours on mechanical characteristics of the base metal determined by static uniaxial tension (decrease in ductile characteristics does not exceed 9 %). During SSRT at a rate of not more than 1·10–6 s–1 in pure gaseous hydrogen environment under a pressure of 10 MPa, the change in strength and ductile characteristics does not exceed 13 % in comparison with reference tests in nitrogen environment under the same pressure. The results obtained allow us to consider that the base metal of low-alloy pipe steel with ferrite-perlite microstructure of X52 strength class is sufficiently resistant to hydrogen embrittlement. Final confirmation of the possibility to use LDP made from steel under study will be the results of further qualification tests, including the study of the weld metal and heat-affected zone properties.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3