Structural characteristics and properties of heat-resistant nickel β-alloys produced via the centrifugal SHS-casting method

Author:

Sanin V. V.1ORCID,Aheiev M. I.2ORCID,Loginov P. A.2ORCID,Bychkova M. Ya.2ORCID,Shukman E. S.3ORCID,Mezhevaia L. Yu.1ORCID,Sanin V. N.4ORCID,Lobova T. A.2ORCID

Affiliation:

1. National University of Science and Technology «MISIS»; JSC «Giredmet» n.a. N.P. Sazhin

2. National University of Science and Technology «MISIS»

3. JSC «Giredmet» n.a. N.P. Sazhin

4. Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences

Abstract

Employing centrifugal self-propagating high-temperature synthesis (SHS) metallurgy, complemented by advanced metallurgical processes such as vacuum induction melting (VIM) and vacuum arc remelting (VAR), yielded the alloy formulation denoted as base–2.5Mo–1.5Re–1.5Ta–0.2Ti. This study investigates the effects of various technological modes and additional metallurgical treatments on the alloy's impurity and non-metallic inclusion content, structural characteristics, mechanical behavior under compression, and its oxidation mechanisms and kinetics when exposed to temperatures of 1150 °C for 30 h. With increasing centrifugal acceleration, the proportion of non-metallic inclusions (number of points) drops from 5 to 1–2 points. The best combination mechanical properties, including σucs = 1640 ± 20 MPa, σys = 1518 ± 10 MPa, and residual deformation were observed in alloys processed under conditions of increased gravitational force (g = 50). Within a centrifugal force range of g = 20÷300, the composition of the synthesis products aligned with the theoretical expectations. The total content of impurities is 0.15 ± 0.02 %, with a decrease in gas impurities–oxygen and nitrogen levels reduced to 0.018 % and 0.0011 %, respectively. The structural analysis of the alloys revealed the presence of globular and streaked inclusions of a chromium-based solid solution embedded within the matrix. Inclusions with thickness of 2–8 μm are present in the intergranular space: (Cr)Ni,Mo,Co, (Cr)Mo,Re and (Cr)Re,Mo. The formation of the Ni(Al,Ti) phase at grain boundaries was identified, contributing to an enhancement in plastic resistance and overall strength of the alloy. Oxidation mechanisms varied across different processing modes, with the size of structural components significantly influencing oxidation kinetics. The weight gain observed in SHS samples was 70 ± 10 g/m2 with oxidation predominantly occurring along the NiAl interphase boundaries and penetrating into the depth of the sample. TEM facilitated the identification of phases enriched with Ti microadditions, reducing the levels of dissolved nitrogen and oxygen within the intermetallic phase to a combined weight percentage (ΣO,N) of 0.0223 wt.%.

Publisher

National University of Science and Technology MISiS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3