Fabrication and oxidation resistance of the non-stoichiometric tantalum-hafnium carbonitride

Author:

Suvorova V. S.1,Nepapushev A. A.1,Moskovskikh D. O.1,Kuskov K. V.1

Affiliation:

1. National University of Science and Technology (NUST) «MISIS»

Abstract

This research was conducted to obtain non-stoichiometric tantalum-hafnium carbonitride powder of the Fm3m (225) structural type using a combination of mechanical activation (MA) and self-propagating high-temperature synthesis (SHS) methods. Mechanical activation for 60 min in a low-energy mode (347 rpm) forms Ta/Hf/C composite particles 1 to 20 μm in size with a layered structure and contributes to a uniform distribution of elements. SHS of a mechanically activated Ta + Hf + C mixture in a nitrogen atmosphere (0.8 MPa) leads to the formation of a single-phase tantalum-hafnium carbonitride powder with the Ta0.25Hf0.75C0.5N0.3 composition where particles feature by a ≪spongy≫ morphology with pores and caverns and consist of submicron grains. Spark plasma sintering (SPS) was used to obtain a bulk sample of tantalum-hafnium carbonitride with a grain size of 3 to 5 μm, relative density of 98.2 Ѓ} 0.3 %, hardness of 19.8 Ѓ} 0.2 GPa, and crack resistance of 5.4 Ѓ} 0.4 MPa・m1/2. The kinetics of (Ta,Hf)CN oxidation at 1200 °C in air is described by a parabolic law suggesting the formation of an Hf6Ta2O17 + mHfO2 oxide layer with a low oxygen diffusion rate where the oxidation rate is 0.006 mg/(cm2・s). A (Ta,Hf)CN oxidation mechanism is proposed, which states that Ta2O5 and HfO2 are formed on the surface of grains at the first stage that react with each other at the second stage to form a Hf6Ta2O17 homologous superstructure and monoclinic HfO2. CO, CO2, NO and NO2 gaseous oxidation products are released with the formation of pores and cracks.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys,Surfaces, Coatings and Films,Materials Science (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3