Crack resistance, strength and dynamic fatigue of quartz fibers with copper coatings

Author:

Bulatov M. I.1,Shatsov A. A.1,Grigoryev N. S.1,Malkov N. A.2

Affiliation:

1. Perm National Research Polytechnic University

2. Perm State National Research University

Abstract

Metallized coatings can significantly improve the operational properties of quartz fibers. The research was conducted to determine the crack resistance, strength and dynamic fatigue of optical fibers without any coating and with copper coatings. The microhardness of quartz fibers was measured by the diamond indentation of end surfaces. The stress intensity parameter K1cwas found from the A. Niihara semi-empirical dependence. The geometry of indentation and radial cracks was studied using a scanning electron microscope. The crack resistance of uncoated quartz turned out to be almost 3 times less as compared to the copper coating fiber, which is presumably due to the additive contribution of compressive stresses on fiber surfaces and quartz wetting with copper. Copper-coated optical fiber drawing increases the tensile strength, crack resistance and dynamic fatigue parameter, and it is the main resource for maintaining operation in the conditions of a statistical approach to structural strength. Comparative tests were conducted to check the optical fiber strength by two-point bending and axial tension methods. Experimental tests conducted to check the ultimate mechanical strength of quartz optical fibers showed a significant spread of data, which indicates the presence of cracks of various sizes in a brittle solid and is a characteristic feature of brittle fracture as suggested by the A. Griffiths theory. In addition, it was assumed that the chaotic distribution of defects and microcracks extends along the entire length of a brittle solid, a quartz optical fiber in this case. A statistical model based on the Weibull distribution was used to describe surface microcracks depending on the fiber length. As a result, Weibull graphs were plotted in coordinates connecting the probability of failure with the strength, fiber length and parameter describing the ultimate strength.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys,Surfaces, Coatings and Films,Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3