Linear Anti-interference Algorithm for Digital Signal Transmission in Fiber Optic Communication Networks based on Link Analysis

Author:

Wu Jing,Jin Cheng,Wang Ziwu

Abstract

In order to achieve accurate transmission of protection signals in fiber optic communication networks, it is necessary to perform channel balancing configuration of fiber optic communication networks and adaptive forwarding control processing of relay protection signals, the author proposes an accurate transmission method for relay protection signals in fiber optic communication networks based on time-varying multipath fading suppression and adaptive beamforming. The system analyzes the sources of wireless long-distance pain signal interference signals, introduces anti-interference technologies such as two-dimensional joint processing (STAP), provides anti-interference algorithms and related gain analysis, and conducts signal processing gain simulation using MATLAB. Based on the analysis of comprehensive simulation results, at a given symbol length, the signal bandwidth increases, and the processing gain infinitely approaches the given theoretical limit value, rather than increasing nonlinearly. The reason is that the channel is affected by noise, and the channel estimation value and signal conjugate multiplication produce a noise quadratic term. At this point, the estimated value of the coherent region channel is reduced by the influence of noise, and the signal-to-noise ratio loss caused by the noise quadratic term is reduced, so the processing gain increases. During the process of infinite increase in signal bandwidth, the input signal-to-noise power ratio of the receiver tends to decrease towards an infinite value, limited by the size of the coherent region. The channel estimation value increases under the influence of noise, and the noise quadratic term is the main factor affecting the output noise power. When the symbol length is greater than the coherent time, the smaller the maximum Doppler frequency shift and the larger the coherent detection area, the greater the processing gain.

Publisher

Scalable Computing: Practice and Experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3