Hybrid Balanced Task Clustering Algorithm for Scientific Workflows in Cloud Computing

Author:

Kaur Avinash,Gupta Pooja,Singh Manpreet

Abstract

Scientific Workflow is a composition of both coarse-grained and fine-grained computational tasks displaying varying execution requirements. Large-scale data transfer is involved in scientific workflows, so efficient techniques are required to reduce the makespan of the workflow. Task clustering is an efficient technique used in such a scenario that involves combining multiple tasks with shorter execution time into a single cluster to be executed on a resource. This leads to a reduction of scheduling overheads in scientific workflows and thus improvement of performance. However available task clustering methods involve clustering the tasks horizontally without the consideration of the structure of tasks in a workflow. We propose hybrid balanced task clustering algorithm that uses the parameter of impact factor of workflows along with the structure of workflow. According to this technique, tasks can be considered for clustering either vertically or horizontally based on the value of the impact factor. This minimizes the system overheads and the makespan for execution of a workflow. A simulation based evaluation is performed on real workflows that shows the proposed algorithm is efficient in recommending clusters. It shows improvement of 5-10\% in makespan time of workflow depending on the type of workflow used.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FOCALB: Fog Computing Architecture of Load Balancing for Scientific Workflow Applications;Journal of Grid Computing;2021-10-13

2. Optimizing Workflow Task Clustering Using Reinforcement Learning;IEEE Access;2021

3. Data Placement Oriented Scheduling Algorithm for Scheduling Scientific Workflow in Cloud: A Budget-Aware Approach;Recent Advances in Computer Science and Communications;2020-11-05

4. SwarmForm: A Distributed Workflow Management System with Task Clustering;2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer);2020-11-04

5. Hybrid Load-Balanced Scheduling in Scalable Cloud Environment;International Journal of Information System Modeling and Design;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3