Antimicrobial resistance and mcr-1 gene in Escherichia coli isolated from poultry samples submitted to a bacteriology laboratory in South Africa

Author:

Hassan Ibrahim Z.1ORCID,Wandrag Buks2ORCID,Gouws Johan J.3ORCID,Qekwana Daniel N.4ORCID,Naidoo Vinny1ORCID

Affiliation:

1. Department of Paraclinical Sciences, Veterinary Pharmacology/Toxicology Section, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.

2. Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.

3. Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.

4. Department of Paraclinical Sciences, Veterinary Public Health Section, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.

Abstract

Background and Aim: Antimicrobial resistance (AMR) and recently mobilized colistin resistance (mcr-1) associated colistin resistance among Escherichia coli isolates have been attributed to the overuse of antimicrobials in livestock production. E. coli remains an important pathogen, often associated with mortality and low carcass weight in poultry medicine; therefore, the need to use antimicrobials is common. The study aimed to determine the AMR profile and presence of mcr-1 and mcr-2 genes in avian pathogenic E. coli from poultry samples tested at a bacteriology laboratory for routine diagnosis. This is a first step in understanding the effectiveness of mitigation strategies. Materials and Methods: Fifty E. coli strains were assessed for resistance against ten antimicrobial drugs using broth microdilution. All isolates with a colistin minimum inhibitory concentration (MIC) of 2 μg/mL were analyzed for the presence of mcr-1 and mcr-2 genes by employing the polymerase chain reaction. For each isolate, the following farm information was obtained: farm location, type of farm, and on-farm use of colistin. Results: Sixty-eight percent of the strains were resistant to at least one antimicrobial; 44% were multiple drug-resistant (MDR). Most E. coli isolates were resistant to doxycycline (44%), trimethoprim-sulfamethoxazole (38%), ampicillin (32%), and enrofloxacin (32%). None of the E. coli strains was resistant to colistin sulfate (MIC90 of 2 μg/mL). Only one E. coli isolate held the mcr-1 gene; none carried the mcr-2 gene. Conclusion: Resistance among E. coli isolates in this study was fairly high. Resistance to commonly used antimicrobials was observed, such as doxycycline, trimethoprim-sulfamethoxazole, and enrofloxacin. Only a single E. coli strain carried the mcr-1 gene, suggesting that mcr-1 and mcr-2 genes are common among isolates in this study. The prevalence of AMR, however, suggests that farmers must implement standard biosecurity measures to reduce E. coli burden, and antimicrobial use to prolong the efficacy life span of some of these drugs.

Funder

South African Medical Research Council

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3