Abstract
The blades of the steam turbine are subjected to bending of the steam flow, centrifugal loading, vibration response, and structural mistuning. These factors mentioned contribute significantly to the fatigue failure of steam turbine blades. Low pressure (LP) steam turbines experience premature blade and disk failures due to the stress concentrations in the root location of the blade of its bladed disk. This study of mistuned steam turbine blades subjected to variation in blade geometry will be of great significance to the electricity generation industry. A simplified, mistuned, scaled-down steam turbine bladed disk model was developed using ABAQUS finite element analysis (FEA) software. The acquisition of the vibration characteristics and steady-state stress response of the disk models was carried out through FEA. Such studies are very limited. Subsequently, numerical stress distributions were acquired and the model was subsequently exported to Fe-Safe software for fatigue life calculations based on centrifugal and harmonic sinusoidal pressure loading. Vibration characteristics and response of the variation of the geometric blade of the steam turbine were investigated. Natural FEA frequencies compared well with the published literature of real steam turbines, indicating the reliability of the developed FEA model. The study found that fatigue life is most sensitive to changes in blade length, followed by width and then thickness, in this order. Analytical life cycles and Fe-Safe software show a percentage difference of less than 4.86%. This concludes that the numerical methodology developed can be used for real-life mistuned steam turbine blades subjected to variations in blade geometry.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献