Understanding the reactive interfacial flow dynamics with production of viscoelastic material through large amplitude oscillatory shear (LAOS) measurements of the viscoelastic interface

Author:

Yagi Harumi1,Nagatsu Yuichiro1ORCID,Takano Masayoshi2ORCID,Suzuki Ryuta X.1ORCID

Affiliation:

1. Department of Chemical Engineering, Tokyo University of Agriculture and Technology 1 , Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan

2. TA Instruments Japan Inc. 2 , Lexington-plaza Nishigotanda 6F, Nishigotanda 5-2-4, Shinagawa, Tokyo 141-0031, Japan

Abstract

In this study, the interfacial flow dynamics involving a chemical reaction that produces viscoelastic material at the interface between two liquids is experimentally investigated, and the material is evaluated using interfacial large amplitude oscillatory shear (LAOS) measurements. The flow dynamics indicates fingering patterns at low injection flow rates and fracturing patterns at high flow rates in Hele-Shaw cells, where a more viscous xanthan gum solution is displaced by the less viscous Fe(NO3)3 solution with various concentrations of Fe(NO3)3. The threshold flow rate value of such a transition is different for various concentrations of Fe(NO3)3. Although such a transition without chemical reactions has been discussed, the factors responsible for the transition remain unclear. The flow dynamics in Hele-Shaw cells is considered to flow under large deformation, which exceeds the small amplitude oscillatory shear condition but is under the LAOS condition. Therefore, LAOS measurement of the viscoelastic interface is performed for various concentrations of Fe(NO3)3. Using the characteristic properties extracted from the LAOS measurements, the elastic and viscous forces of the viscoelastic interface are evaluated. We show the transition from fingering to fracturing patterns when the elastic force exceeds a certain value. These findings highlight that rheology under large deformation of the viscoelastic interface plays a crucial role in interfacial flow, where viscoelastic materials are produced by chemical reactions at the interface. In addition, this study should be an example of the successful elucidation of physical phenomena by interfacial LAOS, which has been reported in a very limited number of studies.

Funder

Japan Society for the Promotion of Science

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3