High-frequency optimally windowed chirp rheometry for rapidly evolving viscoelastic materials: Application to a crosslinking thermoset

Author:

Athanasiou Thanasis12ORCID,Geri Michela3ORCID,Roose Patrice4ORCID,McKinley Gareth H.5ORCID,Petekidis George12ORCID

Affiliation:

1. Institute of Electronic Structure and Laser, FORTH 1 , Heraklion 70013, Greece

2. Department of Materials Science and Technology, University of Crete 2 , Heraklion 70013, Greece

3. Department of Materials Science and Engineering, Massachusetts Institute of Technology 3 , Cambridge, Massachusetts 02139

4. Allnex Belgium SA/NV 4 , Anderlechtstraat 33, Drogenbos 1620, Belgium

5. 5 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Knowledge of the evolution in the mechanical properties of a curing polymer matrix is of great importance in composite parts or structure fabrication. Conventional rheometry, based on small amplitude oscillatory shear, is limited by long interrogation times. In rapidly evolving materials, time sweeps can provide a meaningful measurement albeit at a single frequency. To overcome this constraint, we utilize a combined frequency- and amplitude-modulated chirped strain waveform in conjunction with a homemade sliding plate piezo-operated rheometer (PZR) and a dual-head commercial rotational rheometer (Anton Paar MCR 702) to probe the linear viscoelasticity of these time-evolving materials. The direct controllability of the PZR, resulting from the absence of any kind of firmware and the microsecond actuator-sensor response renders this device ideal for exploring the advantages of this technique. The high frequency capability allows us to extend the upper limits of the accessible linear viscoelastic spectrum and, most importantly, to shorten the length of the interrogating strain signal (OWCh-PZR) to subsecond scales, while retaining a high time-bandwidth product. This short duration ensures that the mutation number (NMu) is kept sufficiently low, even in fast-curing resins. The method is validated via calibration tests in both instruments, and the corresponding limitations are discussed. As a proof of concept, the technique is applied to a curing vinylester resin. The linear viscoelastic (LVE) spectrum is assessed every 20 s to monitor the rapid evolution in the time and frequency dependence of the complex modulus. Comparison of the chirp implementation, based on parameters such as duration of the experiment, sampling frequency, and frequency range, in a commercial rotational rheometer with the PZR provides further information on the applicability of this technique and its limitations. Finally, FTIR spectroscopy is utilized to gain insights into the evolution of the chemical network, and the gap dependence of the evolving material properties in these heterogeneous systems is also investigated.

Funder

Forgreensoft

Publisher

Society of Rheology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3