Extensional flow affecting shear viscosity: Experimental evidence and comparison to models

Author:

Hodgkinson Richard1ORCID,Chaffin Stephen T.2,Zimmerman William B. J.1ORCID,Holland Chris3ORCID,Howse Jonathan R.1

Affiliation:

1. Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom

2. School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom

3. Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom

Abstract

The effect of extensional flow on apparent shear viscosity has never previously been directly measured nor is it often considered. Here, for the first time, through using a novel flow configuration (two-phase shear response under extensional flow), we have directly measured the effect extensional flow has on the apparent shear viscosity of a viscoelastic polymer solution in a controlled and kinematically mixed manner. We show, via a control transient shear experiment, that the apparent shear viscosity of the solution under mixed deformation depends not only on the shear rate but also on the extension rate and their relative direction: shear thinning being enhanced by parallel and reduced by perpendicular extensional flow, respectively. A 62% reduction in apparent viscosity with parallel extension was seen in this work. We then test the ability of the commonly used Giesekus and Carreau–Yasuda (incorporating generalized shear rate) models to predict the effect of extension rate on apparent shear viscosity against our data. The Giesekus model was found to predict the correct qualitative behavior under both parallel and perpendicular extensional flow, and depending on the fitting parameters, also provided a loosely quantitative agreement. Conversely, the generalized shear rate description does not capture the qualitative behavior, with the most significant errors occurring for perpendicular extension (i.e., expansion) flows. This work emphasizes the rarely noted shortcomings of the latter approach when used for experimental analysis and engineering design when extensional flows are additionally present.

Funder

H2020 Future and Emerging Technologies

Engineering and Physical Sciences Research Council

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3