Predicting the Performance of MPI Applications over Different Grid Architectures

Author:

Fanfakh Ahmed Badri MuslimORCID

Abstract

Nowadays, the high speed and accurate optimization algorithms are required. In most of the cases, researchers need a method to predict some criteria with acceptable accuracy to use it after in their algorithms. However, in the field of parallel computing the execution time can be considered the most important criteria. Consequently, this paper presents new execution time prediction model for message passing interface applications execute over numerous grid scenarios. The model has ability to predict the execution time of the message passing applications running over any grid configuration in term of different number of nodes and their computing powers. The experiments are evaluated over SimGrid simulator to simulate the grid configuration scenarios. The results of comparing the real and the predicted execution time show a good accuracy. The average error ratio between the real and the predicted execution time for three benchmarks are 4.36%, 5.79% and 6.81%.

Publisher

University of Babylon

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lowering Entry Barriers to Developing Custom Simulators Of Distributed Applications and Platforms with Simgrid;2024

2. Simulation of Distributed Systems in Constrained Environments Using ESDS: the Arctic Tundra Case;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17

3. WCSim: A Cloud Computing Simulator with Support for Bag of Tasks Workflows;2023 IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2023-10-17

4. A load balancing method for message passing application in distributed computing systems;PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH IN PURE AND APPLIED SCIENCE (ICARPAS2021): Third Annual Conference of Al-Muthanna University/College of Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3