The effect of quantitative traits on grain productivity of maize hybrids depending on climatic conditions

Author:

Krivosheev G. Ya.1ORCID,Ignatiev A. S.1ORCID

Affiliation:

1. FSBSI Agricultural Research Center “Donskoy”

Abstract

   The purpose of the study was to identify the effect of quantitative traits on grain productivity of maize hybrids depending on moisture availability.   The study was carried out on the breeding field of the laboratory for maize breeding and seed production of the FSBSI “ARC “Donskoy” in 2020–2023. The soil of the experimental plot was ordinary blackearth, with a humus layer thickness of 140 cm. The climate is characterized by aridity with unstable moisture. The years of the study were contrasting in temperature and moisture availability (HTC 0.49–0.83). Due to the uneven distribution of precipitation during a vegetation period of maize, the temperature regime through the months and moisture availability had even greater differences (HTC 0.11–2.28). The objects of research were 96 maize hybrids. The main method for developing hybrids was an interline hybridization. There has been identified a stable correlation between grain productivity and quantitative traits in each of the four years of study, when ‘one ear weight’ was r = 0.34±0.09 – 0.64±0.08 and ‘number of grains in a ear row’ was r = 0.35±0.09–0.58±0.08. The specific climatic conditions of some years of the study (one year out of four) influenced the lack of correlation between amount of productivity and quantitative traits with ‘number of ears per plant’ (r = 0.11 ± 0.10 in 2022), ‘number of grains per ear’ (r = 0.01±0.10 in 2023), ‘grain yield during threshing (r = 0.04±0.10 in 2023). The correlation between productivity and traits was subject to even greater variability depending on weather conditions with ‘ear attachment height’ (r = 0.01±0.10–0.40±0.09), ‘plant height’ (r = 0.16±0.10–0.38±0.09), ‘ear diameter’ (r = -0.02±0.10–0.43±0.09), ‘1000-grain weight’ (r = -0.14±0.10–0.45±0.09). In all years of the study, there were no correlation between productivity and such traits as ‘number of grain rows’ (r = -0.27±0.09–0.17±0.10) and ‘ear length’ (r = 0.01±0.10–0.29±0.09).

Publisher

FSBSI Agricultural Research Center Donskoy

Reference11 articles.

1. Bizhoev M. V, Kagermazov A. M., Khachidogov A. V, Bizhoev R. V Izuchenie linii voskovidnoi kukuruzy kollektsii vir po kolichestvennym i khozyaistvenno poleznym priznakam v Kabardino-Balkarii [Study of the waxy maize line of the VIR collection according to quantitative and economically useful traits in Kabardino-Balkaria] // Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2022. № 99. S. 71–78. URL: https://proceedings.kubsau.ru/issue/2022/99/71-78

2. Gudko V. N., Usatov A. V., Azarin K. V. Sezonnaya i godovaya dinamika gidrotermicheskikh uslovii v vostochnoi prirodno-sel'skokhozyaistvennoi zone rostovskoi oblasti v 1961–2020 gg. [Seasonal and annual dynamics of hydrothermal conditions in the eastern natural and agricultural part of the Rostov region in 1961–2020] // Aridnye ekosistemy. 2023. T. 29, № 2 (95). S. 29–35. URL: https://elibrary.ru/osfpen

3. Ismagilov, K. R. Otsenka agroklimaticheskikh uslovii vozdelyvaniya kukuruzy na territorii Respubliki Bashkortostan [Estimation of agroclimatic conditions for maize cultivation on the territory of the Republic of Bashkortostan] // Permskii agrarnyi vestnik. 2020. № 2 (30). S. 39–46. DOI: 10.24411/2307-2873-2020-10020

4. Kagermazov A. M., Khachidogov A. V. Analiz kolichestvennykh i khozyaistvenno tsennykh priznakov linii kukuruzy kollektsii VIR v usloviyakh predgornoi zony Kabardino-Balkarii [Analysis of quantitative and economically valuable traits of maize lines from the VIR collection in the conditions of the foothill zone of Kabardino-Balkaria] // Zernovoe khozyaistvo Rossii. 2023. T. 15, № 6. S. 59–66. DOI: 10.31367/2079-8725-2023-89-6-59-66

5. Kovtunova N. A., Kovtunov V. V., Romanyukin A. E., Ermolina G. M. Urozhainost' sorgo travyanistogo v zavisimosti ot meteorologicheskikh uslovii [Grass sorghum productivity depending on meteorological conditions] // Agrarnaya nauka Evro-Severo-Vostoka. 2022. № 23(3). S. 334–342. DOI: 10.30766/2072-9081.2022.23.3.334-342

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3