THE «DECISION TREE» METHOD FOR STATISTICAL CONTROL OF PARAMETERS INTERRELATIONS in MULTIDIMENSIONAL INFORMATION FLOWS

Author:

Grigoriev Alexander T.1,Kuznetsov Nikita A.2,Slavutskaya Elena V.3ORCID

Affiliation:

1. The Ilyenko Elara Research and Production Complex (ELARA JSC)

2. Chuvash State University

3. I.Ya. Yakovlev Chuvash State Pedagogical University

Abstract

The purpose of the study is to show the possibilities of machine learning methods for analyzing intra–system connections of multidimensional data. In modern automated process control systems and in particular, in the electric power industry, continuous monitoring of information exchange is necessary. Data flows are random and the parameters transmitted via communication channels have different ranges of variation and dimension. In these conditions, particularly relevant is the development of statistical control methods of such data intra-system connections. Methods. To solve the problem, the machine learning method “decision tree” is used. The possibilities of the approach are demonstrated by analyzing the data interconnections which model a stream containing 27 random parameters with different dimensions. The test was carried out on a sample of 100 to 500 values of each of the parameters. Results. It is shown that statistical control can be carried out without considering the structure of the decision tree itself, according to such indicators as the percentage of links recognition, ranges of splitting of parameter values during classification, the significance of individual parameters (attributes). Conclusions. Since the algorithm does not require a large sample of the analyzed parameters values, statistical control can be carried out in a sliding time window. It is shown that the approach can be used to analyze information exchange in the automated control system.

Publisher

I.N. Ulianov Chuvash State University

Subject

General Medicine,General Chemistry

Reference21 articles.

1. Slavutskaya E.V., Slavutskii L.A., Abrukov V.S. et al. Vertikal’nyy sistemnyy analiz dannykh psikhodiagnostiki uchashchikhsya s ispol’zovaniyem metoda «derevo resheniy» [Vertical system analysis of students’ psycho diagnostic data using the ‘Decision Tree’ method]. Science for Education Today, 2020, vol. 10, no. 3, pp. 87–107. DOI: http://dx.doi.org/10.15293/2658-6762.2003.05.

2. Duke V., Samoylenko A. Data Mining: uchebnyi kurs [Data Mining: training course]. St. Petersburg, Peter Publ., 2001, 386 p.

3. Levitin A.V. Ogranicheniya moshchi algoritmov: Derev’ya prinyatiya resheniya. Algoritmy. Vvedeniye v razrabotku i analiz) [Algorithm Power Constraints: Decision Trees,” Algorithms. Introduction to Design and Analysis (Chapter 10)]. Moscow, Williams Publ., 2006, pp. 409–417.

4. Slavutskaya E., Slavutskiy L. O vybore struktury iskusstvennykh neyrosetey i algoritmov analiza psikhodiagnosticheskikh dannykh [On choosing the artificial neural networks structure and the algorithms for psycho diagnostic data analyzing]. Kazan pedagogical journal, 2020, no. 5(142), рp. 202–210. DOI:34772/KPJ.2020.142.5.026.

5. Shitikov V.K., Mastitsky S.E. Klassifikatsiya, regressiya i drugiye algoritmy Data Mining s ispol’zovaniyem R. [Classification, regression and other data mining algorithms using R. Available at: https://ranalytics.github.io/data-mining.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3