From Mindless Masses to Small Groups: Conceptualizing Collective Behavior in Crowd Modeling

Author:

Templeton Anne1,Drury John1,Philippides Andrew2

Affiliation:

1. School of Psychology, University of Sussex

2. Department of Informatics, Centre for Computational Neuroscience and Robotics, University of Sussex

Abstract

Computer simulations are increasingly used to monitor and predict behavior at large crowd events, such as mass gatherings, festivals and evacuations. We critically examine the crowd modeling literature and call for future simulations of crowd behavior to be based more closely on findings from current social psychological research. A systematic review was conducted on the crowd modeling literature ( N = 140 articles) to identify the assumptions about crowd behavior that modelers use in their simulations. Articles were coded according to the way in which crowd structure was modeled. It was found that 2 broad types are used: mass approaches and small group approaches. However, neither the mass nor the small group approaches can accurately simulate the large collective behavior that has been found in extensive empirical research on crowd events. We argue that to model crowd behavior realistically, simulations must use methods which allow crowd members to identify with each other, as suggested by self-categorization theory.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

General Psychology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The personal space and the collective behavior of crowd disasters;2024-09-10

2. Integrated modeling of crowd groups based on spatial distribution of members;Journal of Statistical Mechanics: Theory and Experiment;2024-07-03

3. A dynamic state-based model of crowds;Safety Science;2024-07

4. Adaptive Formation by Pedestrian Small Groups During Egresses;Journal of Disaster Research;2024-04-01

5. A Systematic Analysis of Subgroup Research in Pedestrian and Evacuation Dynamics;IEEE Transactions on Intelligent Transportation Systems;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3