Lung Ventilation and Perfusion in Prone and Supine Postures with Reference to Anesthetized and Mechanically Ventilated Healthy Volunteers

Author:

Nyrén Sven1,Radell Peter2,Lindahl Sten G. E.3,Mure Margareta4,Petersson Johan5,Larsson Stig A.6,Jacobsson Hans7,Sánchez-Crespo Alejandro8

Affiliation:

1. Clinical Research Fellow, Department of Molecular Medicine and Surgery, Karolinska Institute, and Department of Radiology, Karolinska University Hospital.

2. Associate Professor and Head, Department of Pediatric Anesthesia and Intensive Care.

3. Professor of Anesthesiology and Director of Research.

4. Associate Professor and Head of Section.

5. Anesthesiologist, Department Anesthesiology and Intensive Care.

6. Professor and Head.

7. Professor, Departments of Nuclear Medicine and Radiology, Karolinska University Hospital.

8. Physicist, Department of Nuclear Medicine.

Abstract

Background The literature on ventilation (V) and lung perfusion (Q) distributions during general anesthesia and controlled mechanical ventilation in supine and prone position is contradictory. The authors aimed to investigate whether V, Q, and ventilation to perfusion ratio (V/Q ratio) matching in anesthetized and mechanically ventilated volunteers are gravity dependent irrespective of posture. Methods Seven healthy volunteers were studied at two different occasions during general anesthesia and controlled mechanical ventilation. One occasion studied ventral to dorsal V and Q distributions in the supine posture and the other in the prone posture. Imaging was performed in supine posture at both occasions. A dual radiotracer technique and single photon emission computed tomography were used. V and Q were simultaneously tagged with Tc-Technegas (Tetley Manufacturing Ltd., Sydney, Australia) and In-labeled macroaggregates of human albumin (TechneScan LyoMAA, Mallinckrodt Medica, Petten, The Netherlands), respectively. Results No differences in V between postures were observed. Q differed between postures, being more uniform over different lung regions in prone posture and dependent in supine posture. The contribution of the vertical direction to the total V/Q ratio heterogeneity was larger in supine (31.4%) than in prone (16.4%) (P = 0.0639, two-tailed, paired t test) posture. Conclusions During mechanical ventilation, prone posture favors a more evenly distributed Q between lung regions. V distribution is independent of posture. This results in a tendency toward lower V/Q gradients in the ventral to dorsal direction in prone compared with supine posture.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3