Characterizing Cochlear Implant Trans-Impedance Matrix Heatmaps in Patients With Abnormal Anatomy

Author:

Cottrell JustinORCID,Winchester Arianna,Friedmann David,Jethanamest Daniel,Spitzer Emily,Svirsky Mario,Waltzman Susan B.,Shapiro William H.,McMenomey Sean,Roland J. Thomas

Abstract

Objective To characterize transimpedance matrix (TIM) heatmap patterns in patients at risk of labyrinthine abnormality to better understand accuracy and possible TIM limitations. Study Design Retrospective review of TIM patterns, preoperative, and postoperative imaging. Setting Tertiary referral center. Patients Patients undergoing cochlear implantation with risk of labyrinthine abnormality. Intervention None. Results Seventy-seven patients were evaluated. Twenty-five percent (n = 19) of patients had a TIM pattern variant identified. These variants were separated into 10 novel categories. Overall, 9% (n = 6) of electrodes were malpositioned on intraoperative x-ray, of which 50% (n = 3) were underinserted, 17% (n = 1) were overinserted, 17% (n = 1) had a tip foldover, and 17% (n = 1) had a coiled electrode. The number of patients with a variant TIM pattern and normal x-ray was 18% (n = 14), and the number of patients with normal TIM pattern and malposition noted on x-ray was 3% (n = 2; both were electrode underinsertions that were recognized due to open circuits and surgical visualization). A newly defined skip heat pattern was identified in patients with IP2/Mondini malformation and interscalar septum width <0.5 mm at the cochlear pars ascendens of the basal turn. Conclusions This study defines novel patterns for TIM heatmap characterization to facilitate collaborative and comparative research moving forward. In doing so, it highlights a new pattern termed skip heat, which corresponds with a deficient interscalar septum of the cochlea pars ascendens of the basal turn in patients with IP2 malformation. Overall, the data assist the surgeon in better understanding the implications and limitations of TIM patterns within groups of patients with risk of labyrinthine abnormalities.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3