Beneficial Effects of Nitric Oxide on Outcomes after Cardiac Arrest and Cardiopulmonary Resuscitation in Hypothermia-treated Mice

Author:

Kida Kotaro1,Shirozu Kazuhiro1,Yu Binglan1,Mandeville Joseph B.1,Bloch Kenneth D.1,Ichinose Fumito1

Affiliation:

1. From the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (K.K., K.S., B.Y., K.D.B., and F.I.); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (J.B.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.

Abstract

Abstract Background: Therapeutic hypothermia (TH) improves neurological outcomes after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Although nitric oxide prevents organ injury induced by ischemia and reperfusion, role of nitric oxide during TH after CPR remains unclear. In this article, the authors examined the impact of endogenous nitric oxide synthesis on the beneficial effects of hypothermia after CA/CPR. The authors also examined whether or not inhaled nitric oxide during hypothermia further improves outcomes after CA/CPR in mice treated with TH. Methods: Wild-type mice and mice deficient for nitric oxide synthase 3 (NOS3−/−) were subjected to CA at 37°C and then resuscitated with chest compression. Body temperature was maintained at 37°C (normothermia) or reduced to 33°C (TH) for 24 h after resuscitation. Mice breathed air or air mixed with nitric oxide at 10, 20, 40, 60, or 80 ppm during hypothermia. To evaluate brain injury and cerebral blood flow, magnetic resonance imaging was performed in wild-type mice after CA/CPR. Results: Hypothermia up-regulated the NOS3-dependent signaling in the brain (n = 6 to 7). Deficiency of NOS3 abolished the beneficial effects of hypothermia after CA/CPR (n = 5 to 6). Breathing nitric oxide at 40 ppm improved survival rate in hypothermia-treated NOS3−/− mice (n = 6) after CA/CPR compared with NOS3−/− mice that were treated with hypothermia alone (n = 6; P < 0.05). Breathing nitric oxide at 40 (n = 9) or 60 (n = 9) ppm markedly improved survival rates in TH-treated wild-type mice (n = 51) (both P < 0.05 vs. TH-treated wild-type mice). Inhaled nitric oxide during TH (n = 7) prevented brain injury compared with TH alone (n = 7) without affecting cerebral blood flow after CA/CPR (n = 6). Conclusions: NOS3 is required for the beneficial effects of TH. Inhaled nitric oxide during TH remains beneficial and further improves outcomes after CA/CPR. Nitric oxide breathing exerts protective effects after CA/CPR even when TH is ineffective due to impaired endogenous nitric oxide production.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3