Sodium Thiosulfate Attenuates Acute Lung Injury in Mice

Author:

Sakaguchi Masahiro1,Marutani Eizo1,Shin Hae-sook1,Chen Wei1,Hanaoka Kenjiro1,Xian Ming1,Ichinose Fumito1

Affiliation:

1. From the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (M.S., E.M., H.-s.S., F.I.); Department of Chemistry, Washington State University, Pullman, Washington (W.C., M.X.); and Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan (K.H.).

Abstract

Abstract Background: Acute lung injury is characterized by neutrophilic inflammation and increased lung permeability. Thiosulfate is a stable metabolite of hydrogen sulfide, a gaseous mediator that exerts antiinflammatory effects. Although sodium thiosulfate (STS) has been used as an antidote, the effect of STS on acute lung injury is unknown. The authors assessed the effects of STS on mice lung and vascular endothelial cells subjected to acute inflammation. Methods: Lung injury was assessed in mice challenged with intratracheal lipopolysaccharide or subjected to cecal ligation and puncture with or without STS. Effects of STS on endothelial permeability and the production of inflammatory cytokines and reactive oxygen species were examined in cultured endothelial cells incubated with lipopolysaccharide or tumor necrosis factor-α. Levels of sulfide and sulfane sulfur were measured using novel fluorescence probes. Results: STS inhibited lipopolysaccharide-induced production of cytokines (interleukin-6 [pg/ml]; 313 ± 164, lipopolysaccharide; 79 ± 27, lipopolysaccharide + STS [n = 10]), lung permeability, histologic lung injury, and nuclear factor-κB activation in the lung. STS also prevented up-regulation of interleukin-6 in the mouse lung subjected to cecal ligation and puncture. In endothelial cells, STS increased intracellular levels of sulfide and sulfane sulfur and inhibited lipopolysaccharide or tumor necrosis factor-α–induced production of cytokines and reactive oxygen species. The beneficial effects of STS were associated with attenuation of the lipopolysaccharide-induced nuclear factor-κB activation through the inhibition of tumor necrosis factor receptor–associated factor 6 ubiquitination. Conclusions: STS exerts robust antiinflammatory effects in mice lung and vascular endothelium. The results suggest a therapeutic potential of STS in acute lung injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3