Author:
Li Rong,Lai Ieng K.,Pan Jonathan Z.,Zhang Pengbo,Maze Mervyn
Abstract
Background
Clinical studies have shown that dexmedetomidine ameliorates cognitive decline in both the postoperative and critical care settings. This study determined the mechanism(s) for the benefit provided by dexmedetomidine in a medical illness in mice induced by lipopolysaccharide.
Methods
Cognitive decline, peripheral and hippocampal inflammation, blood–brain barrier permeability, and inflammation resolution were assessed in male mice. Dexmedetomidine was administered in the presence of lipopolysaccharide and in combination with blockers. Cultured macrophages (RAW 264.7; BV-2) were exposed to lipopolysaccharide ± dexmedetomidine ± yohimbine; tumor necrosis factor α release into the medium and monocyte NFκB activity was determined.
Results
In vivo, lipopolysaccharide-induced cognitive decline and inflammation (mean ± SD) were reversed by dexmedetomidine (freezing time, 55.68 ± 12.31 vs. 35.40 ± 17.66%, P = 0.0286, n = 14; plasma interleukin [IL]-1β: 30.53 ± 9.53 vs. 75.68 ± 11.04 pg/ml, P < 0.0001; hippocampal IL-1β: 3.66 ± 1.88 vs. 28.73 ± 5.20 pg/mg, P < 0.0001; n = 8), which was prevented by α2 adrenoceptor antagonists. Similar results were found in 12-month-old mice. Lipopolysaccharide also increased blood–brain barrier leakage, inflammation-resolution orchestrator, and proresolving and proinflammatory mediators; each lipopolysaccharide effect was attenuated by dexmedetomidine, and yohimbine prevented dexmedetomidine’s attenuating effect. In vitro, lipopolysaccharide-induced tumor necrosis factor α release (RAW 264.7: 6,308.00 ± 213.60 vs. 7,767.00 ± 358.10 pg/ml, P < 0.0001; BV-2: 1,075.00 ± 40.41 vs. 1,280.00 ± 100.30 pg/ml, P = 0.0003) and NFκB–p65 activity (nuclear translocation [RAW 264.7: 1.23 ± 0.31 vs. 2.36 ± 0.23, P = 0.0031; BV-2: 1.08 ± 0.26 vs. 1.78 ± 0.14, P = 0.0116]; phosphorylation [RAW 264.7: 1.22 ± 0.40 vs. 1.94 ± 0.23, P = 0.0493; BV-2: 1.04 ± 0.36 vs. 2.04 ± 0.17, P = 0.0025]) were reversed by dexmedetomidine, which was prevented by yohimbine.
Conclusions
Preclinical studies suggest that the cognitive benefit provided by dexmedetomidine in mice administered lipopolysaccharide is mediated through α2 adrenoceptor–mediated anti-inflammatory pathways.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献