Heme Oxygenase-1/Carbon Monoxide-regulated Mitochondrial Dynamic Equilibrium Contributes to the Attenuation of Endotoxin-induced Acute Lung Injury in Rats and in Lipopolysaccharide-activated Macrophages

Author:

Yu Jianbo1,Shi Jia1,Wang Dan1,Dong Shuan1,Zhang Yuan1,Wang Man1,Gong Lirong1,Fu Qiang1,Liu Daquan1

Affiliation:

1. From the Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China (J.Y., J.S., D.W., S.D., Y.Z., M.W., L.G.); Department of Intensive Care Medicine, Fourth Center Clinical College of Tianjin Medical University, Tianjin, China (Q.F.); and Department of Pharmacology, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine

Abstract

Abstract Background Sepsis-associated acute lung injury remains the major cause of mortality in critically ill patients and is characterized by marked oxidative stress and mitochondrial dysfunction. Mitochondrial dynamics are indispensable for functional integrity. Additionally, heme oxygenase (HO)-1/carbon monoxide conferred cytoprotection against end-organ damage during endotoxic shock. Herein, we tested the hypothesis that HO-1/carbon monoxide played a critical role in maintaining the dynamic process of mitochondrial fusion/fission to mitigate lung injury in Sprague-Dawley rats or RAW 264.7 macrophages exposed to endotoxin. Methods The production of reactive oxygen species, the respiratory control ratio (RCR), and the expressions of HO-1 and mitochondrial dynamic markers were determined in macrophages. Concurrently, alterations in the pathology of lung tissue, lipid peroxidation, and the expressions of the crucial dynamic proteins were detected in rats. Results Endotoxin caused a 31% increase in reactive oxygen species and a 41% decrease in RCR levels (n = 5 per group). In parallel, the increased expression of HO-1 was observed in lipopolysaccharide-stimulated macrophages, concomitantly with excessive mitochondrial fission. Furthermore, carbon monoxide-releasing molecule-2 or hemin normalized mitochondrial dynamics, which were abrogated by zinc protoporphyrin IX. Additionally, impaired mitochondrial dynamic balance was shown in Sprague-Dawley rats that received lipopolysaccharide, accompanied by pathologic injury, elevated malondialdehyde contents, decreased manganese superoxide dismutase activities, and lowered RCR levels in rat lung mitochondria. However, the above parameters were augmented by zinc protoporphyrin IX and were in turn reversed by hemin. Conclusions The HO-1/carbon monoxide system modulated the imbalance of the dynamic mitochondrial fusion/fission process evoked by lipopolysaccharide and efficiently ameliorated endotoxin-induced lung injury in vivo and in vitro.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3