Affiliation:
1. Department of Biotechnology, Delhi technological university, Delhi, India
Abstract
The study aims to discuss the challenges associated with treating prostate cancer (PCa), which is known for its complexity and drug resistance. It attempts to find differentially expressed genes (DEGs), such as those linked to anoikis resistance and circulating tumor cells, in PCa samples. This study involves analyzing the functional roles of these DEGs using gene enrichment analysis, and then screening of 102 bioactive compounds to identify a combination that can control the expression of the identified DEGs. In this study, 53 DEGs were identified from PCa samples including anoikis-resistant PCa cells and circulating tumor cells in PCa. Gene enrichment analysis with regards to functional enrichment of DEGs was performed. An inclusive screening process was carried out among 102 bioactive compounds to identify a combination capable of affecting and regulating the expression of selected DEGs. Eventually, gastrodin, nitidine chloride, chenodeoxycholic acid, and bilobalide were selected, as their combination demonstrated ability to modulate expression of 50 out of the 53 genes targeted. The subsequent analysis focused on investigating the biological pathways and processes influenced by this combination. The findings revealed a multifaceted and multidimensional approach to tumor regression. The combination of bioactive compounds exhibited effects on various genes including those related to production of inflammatory cytokines, cell proliferation, autophagy, apoptosis, angiogenesis, and metastasis. The current study has made a valuable contribution to the development of a combination of bioactive natural compounds that can significantly impede the development of treatment resistance in prostate tumor while countering the tumors’ evasion of the immune system. The implications of this study are highly significant as it suggests the creation of an enhanced immunotherapeutic, natural therapeutic concoction with combinatorial potential.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献