Donafenib inhibits PARP1 expression and induces DNA damage, in combination with PARP1 inhibitors promotes apoptosis in liver cancer cells

Author:

Jiang Jiuliang1,Yang Pingping2,Xu Xinyu1,Yuan Huixiong3,Zhu Haitao4

Affiliation:

1. School of Clinical Medicine, Guizhou Medical University

2. Department of Laboratory Medicine, People’s Hospital of Qiannan Prefecture, Guizhou

3. Affiliated Hospital of Youjiang Medical University for Nationalities; Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi

4. Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China

Abstract

Liver cancer is a prevalent malignant tumor globally. The newly approved first-line drug, donafenib, is a novel oral small molecule multi-tyrosine kinase inhibitor that has significant antitumor effects on liver cancer. This study aims to investigate the antitumor effects of donafenib on liver cancer and to explore its potential mechanisms. Donafenib significantly inhibited the viability of Huh-7 and HCCLM3 cells, inhibited malignant cell proliferation, and promoted cell apoptosis, as demonstrated by CCK-8, EdU, and Calcein/PI (propidium iodide) staining experiments. The results of DNA damage detection experiments and western blot analysis indicate that donafenib caused considerable DNA damage in liver cancer cells. The analysis of poly (ADP-ribose) polymerase 1 (PARP1) in liver cancer patients using online bioinformatics data websites such as TIMER2.0, GEPIA, UALCAN, cBioPortal, Kaplan–Meier Plotter, and HPA revealed a high expression of PARP1, which is associated with poor prognosis. Molecular docking and western blot analysis demonstrated that donafenib can directly target and downregulate the protein expression of PARP1, a DNA damage repair protein, thereby promoting DNA damage in liver cancer cells. Western blot and immunofluorescence detection showed that the group treated with donafenib combined with PARP1 inhibitor had significantly higher expression of γ-H2AX and 8-OHdG compared to the groups treated with donafenib or PARP1 inhibitors alone, the combined treatment suppresses the expression of the antiapoptotic protein Bcl2 and enhances the protein expression level of the proapoptotic protein Bcl-2-associated X protein (BAX). These data suggest that the combination of donafenib and a PARP1 inhibitor results in more significant DNA damage in cells and promotes cell apoptosis. Thus, the combination of donafenib and PARP1 inhibitors has the potential to be a treatment option for liver cancer.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3