Is Overtriage Associated With Increased Mortality? Insights From a Simulation Model of Mass Casualty Trauma Care

Author:

Hupert Nathaniel,Hollingsworth Eric,Xiong Wei

Abstract

ABSTRACTPurpose: To examine the relationship between overtriage and critical mortality after a mass casualty incident (MCI) using a simulation model of trauma system response.Methods: We created a discrete event simulation model of trauma system management of MCIs involving individual patient triage and treatment. Model variables include triage performance, treatment capability, treatment time, and time-dependent mortality of critically injured patients. We model triage as a variable selection process applied to a hypothetical population of critically and noncritically injured patients. Treatment capability is represented by staffed emergency department trauma bays with associated staffed operating rooms that are recycled after each use. We estimated critical and noncritical patient treatment times and time-dependent mortality rates from the trauma literature.Results: In this simulation model, overtriage, the proportion of noncritical patients among all of those labeled as critical, has a positive, negative, or variable association with critical mortality depending on its etiology (ie, related to changes in triage sensitivity or to changes in the prevalence and total number of critical patients). In all of the modeled scenarios, the ratio of critical patients to treatment capability has a greater impact on critical mortality than overtriage level or time-dependent mortality assumption.Conclusions: Increasing overtriage may have positive, negative, or mixed effects on critical mortality in this trauma system simulation model. These results, which contrast with prior analyses describing a positive linear relationship between overtriage and mortality, highlight the need for alternative metrics to describe trauma system response after MCIs. We explore using the relative number of critical patients to available and staffed treatment units, or the critical surge to capability ratio, which exhibits a consistent and nonlinear association with critical mortality in this model. (Disaster Med Public Health Preparedness. 2007;1(Suppl 1):S14–S24)

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3