Have Surgery and Implant Modifications Been Associated With Reduction in Soft Tissue Complications in Transfemoral Bone-anchored Prostheses?

Author:

Atallah Robin1,Reetz David2,Verdonschot Nico34,de Kleuver Marinus1,Frölke Jan Paul M.2,Leijendekkers Ruud A.156

Affiliation:

1. Department of Orthopaedics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands

2. Department of Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands

3. Orthopaedic Research Laboratory, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands

4. Laboratory of Biomechanical Engineering, University of Twente, Enschede, the Netherlands

5. Department of Rehabilitation, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands

6. Improve Quality Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands

Abstract

AbstractBackgroundThe most frequently occurring adverse events in individuals with a transfemoral amputation treated with a bone-anchored prosthesis are soft tissue infections and stoma-related complications. These soft tissue complications are believed to be influenced by surgical technique and implant design, but little is known about the effect of changes to treatment on these events.Questions/purposes(1) What is the result of surgical technique and implant modifications on the incidence of soft tissue infections and stoma-related complications in transfemoral bone-anchored prosthesis users, depending on whether they had a conventional stoma and a cobalt-chrome-molybdenum (CoCrMo) osseointegration implant (treatment period 2009 to 2013) or a shallower stoma and titanium osseointegration implant (2015 to 2018)? (2) What is the incidence of serious complications, such as bone or implant infection, aseptic loosening, intramedullary stem breakage, and periprosthetic fracture?MethodsBetween 2009 and 2013, we performed osseointegration implant surgery using a conventional surgical technique and a CoCrMo implant in 42 individuals who had a lower extremity amputation experiencing socket-related problems that resulted in limited prosthesis use. We considered all individuals treated with two-stage surgery with a standard press-fit transfemoral osseointegration implant as potentially eligible for inclusion. Based on this, 100% (42) were eligible, and 5% (two of 42) were excluded because they did not provide informed consent, leaving 95% (40 of 42) for analysis. Between 2015 and 2018, we treated 79 individuals with similar indications with osseointegration implant surgery, now also treating individuals with dysvascular amputations. We used an adapted surgical technique resulting in a shallower stoma combined with a titanium implant. Using the same eligibility criteria as for the first group, 51% (40 of 79) were eligible; 49% (39 of 79) were excluded because they were treated with transtibial amputation, a patient-specific implant, or single-stage surgery and 1% (one of 79) were lost before the 2-year follow-up interval, leaving 49% (39 of 79) for analysis. The period of 2013 to 2015 was a transitional period and was excluded from analysis in this study to keep groups reasonably comparable and to compare a historical approach with the present approach. Hence, we presented a comparative study of two study groups (defined by surgical technique and implant design) with standardized 2-year follow-up. The risk factors for adverse events were similar between groups, although individuals treated with the shallow stoma surgical technique and titanium implant potentially possessed an increased risk because of the inclusion of individuals with dysvascular amputation and the discontinuation of prolonged postoperative antibiotic prophylaxis. Outcomes studied were soft tissue infections and stoma-related complications (hypergranulation or keloid formation as well as stoma redundant tissue) and bone or implant infection, aseptic loosening, implant stem breakage, periprosthetic fracture, and death.ResultsPatients treated with the shallow stoma surgical technique and titanium implant experienced fewer soft tissue infections (13 versus 76 events, absolute risk 0.17 [95% CI 0.09 to 0.30] versus 0.93 [95% CI 0.60 to 1.45]; p < 0.01), which were treated with less invasive measures, and fewer stoma redundant tissue events (0 versus five events, absolute risk 0 versus 0.06 [95% CI 0.03 to 0.14]) than patients treated with the conventional stoma surgical technique and CoCrMo implant. This was contrasted by an increased incidence of surgical site infections occurring between surgical stages 1 and 2, when no stoma was yet created, after the implementation of treatment changes (conventional surgery and CoCrMo implant versus shallow stoma surgery and titanium implant: one versus 11 events, absolute risk 0.01 [95% CI 0.00 to 0.08] versus 0.14 [95% CI 0.08 to 0.25]; p = 0.02). Patients treated with the shallow stoma surgical technique and titanium implant did not experience serious complications, although bone infections occurred (six events in 8% [three of 40] of patients) in the conventional surgery and CoCrMo implant group, all of which were successfully treated with implant retention.ConclusionAdaptations to surgical technique and newer implant designs, as well as learning curve and experience, have resulted in a reduced incidence and severity of soft tissue infections and stoma redundant tissue, contrasted by an increase in surgical site infections before stoma creation. Serious complications such as deep implant infection were infrequent in this 2-year follow-up period. We believe the benefits of these treatment modifications outweigh the disadvantages and currently advise surgeons to create a shallower stoma with a stable soft tissue envelope, combined with a titanium implant.Level of EvidenceLevel III, therapeutic study.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery

Reference28 articles.

1. Strategies for optimizing the soft tissue seal around osseointegrated implants;Abdallah;Adv Healthc Mater,2017

2. Direct skeletal attachment prosthesis for amputee athlete: the unknown potential;AlMuderis;Sports Engineering,2016

3. Safety of osseointegrated implants for transfemoral amputees: a two-center prospective cohort study;Al Muderis;J Bone Joint Surg Am,2016

4. Evaluation of 10 years experience with endo-exo femur prostheses - background, data and results;Aschoff;Z Orthop Unfall,2012

5. Complications of bone-anchored prostheses for individuals with an extremity amputation: a systematic review;Atallah;PLoS One,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3