INTERFERING HSA_CIRC_0001226 MITIGATES LPS-INDUCED BEAS-2B CELL INJURY BY REGULATING MIR-940/TGFBR2 PATHWAY

Author:

Mo Song,Yi Qushen,Bei Xuezhu,Huang Yuan,Lai Junhua

Abstract

ABSTRACT Background: Sepsis-associated acute lung injury (SA-ALI) is a serious threat to human health. A growing body of evidence suggested that circular RNAs may be involved in ALI progression. The aim of this study was to investigate the effect and mechanism of circ_0001226 on lipopolysaccharide (LPS)–induced BEAS-2B cells. Methods: BEAS-2B cells were stimulated with LPS to establish a SA-ALI cell model. The expression of circ_0001226, miR-940, and transforming growth factor beta receptor II (TGFBR2) were monitored by quantitative real-time polymerase chain reaction. Cell proliferation and apoptosis were evaluated by the Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine assay, and flow cytometry. The levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α were calculated by enzyme-linked immunosorbent assay. Western blot was implemented to test the protein levels of PCNA, Bax, and TGFBR2. Dual-luciferase reporter assay and RNA pull-down assay were adopted to investigate the interaction between circ_0001226 and miR-940, as well as TGFBR2 and miR-940. Results: The levels of circ_0001226 and TGFBR2 were elevated, and miR-940 was decreased in SA-ALI serum specimens and LPS-evoked BEAS-2B cells. Besides that, circ_0001226 interference contributed to cell proliferation and restrained apoptosis and inflammation in LPS-induced BEAS-2B cells. Mechanically, circ_0001226 worked as a molecular sponge of miR-940 to regulate TGFBR2 expression. Conclusion: Circ_0001226 deficiency weakened LPS-mediated proliferation inhibition and inflammatory processes in BEAS-2B cells by binding miR-940 and regulating TGFBR2.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3