Disentangling the spinal mechanisms of illusory heat and burning sensations in the thermal grill illusion

Author:

Mitchell Alexandra G.1ORCID,Ehmsen Jesper Fischer1,Christensen Daniel Elmstrøm1,Stuckert Anna Villaume2,Haggard Patrick3,Fardo Francesca14

Affiliation:

1. Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

2. Department of Neuroscience, Copenhagen University, Copenhagen, Denmark

3. Institute of Cognitive Neuroscience, University College London, London, United Kingdom

4. Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Abstract

Abstract The thermal grill illusion (TGI), a phenomenon in which the juxtaposition of innocuous warm and cold temperatures on the skin elicits a burning sensation, offers a unique perspective to how pain occurs in response to harmless stimuli. We investigated the role of the spinal cord in the generation of the TGI across 2 experiments (total n = 80). We applied heat and cold stimuli to dermatomes, areas of skin innervated by a single spinal nerve, that mapped onto adjacent or nonadjacent spinal segments. Enhanced warm and burning ratings during the TGI were observed when cold and warm stimuli were confined within the same dermatome. Furthermore, we found the spatial organisation of warm and cold stimuli within and across dermatomes affected TGI perception. Perceived warmth and burning intensity increased when the cold stimulus projected to the segment more caudal to the warm stimulus, whereas perceived cold during the TGI decreased compared with the opposite spatial arrangement. This suggests that the perception of TGI is enhanced when cold afferents are projected to spinal segments positioned caudally in relation to those receiving warm afferents. Our results indicate distinct interaction of sensory pathways based on the segmental arrangement of afferent fibres and are consistent with current interpretations of the spread and integration of thermosensory information along the spinal cord.

Funder

H2020 European Research Council

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3