Probing white matter microstructure in youth with chronic pain and its relation to catastrophizing using neurite orientation dispersion and density imaging

Author:

Timmers Inge12ORCID,Biggs Emma E.2,Bruckert Lisa3,Tremblay-McGaw Alexandra G.2,Zhang Hui4,Borsook David5,Simons Laura E.2

Affiliation:

1. Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands

2. Departments of Anesthesiology, Perioperative, and Pain Medicine and

3. Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States

4. Department of Computer Science, University College London, London, United Kingdom

5. Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States

Abstract

Abstract Chronic pain is common in young people and can have a major life impact. Despite the burden of chronic pain, mechanisms underlying chronic pain development and persistence are still poorly understood. Specifically, white matter (WM) connectivity has remained largely unexplored in pediatric chronic pain. Using diffusion-weighted imaging, this study examined WM microstructure in adolescents (age M = 15.8 years, SD = 2.8 years) with chronic pain (n = 44) compared with healthy controls (n = 24). Neurite orientation dispersion and density imaging modeling was applied, and voxel-based whole-white-matter analyses were used to obtain an overview of potential alterations in youth with chronic pain and tract-specific profile analyses to evaluate microstructural profiles of tracts of interest more closely. Our main findings are that (1) youth with chronic pain showed widespread elevated orientation dispersion compared with controls in several tracts, indicative of less coherence; (2) signs of neurite density tract-profile alterations were observed in several tracts of interest, with mainly higher density levels in patients; and (3) several WM microstructural alterations were associated with pain catastrophizing in the patient group. Implicated tracts include both those connecting cortical and limbic structures (uncinate fasciculus, cingulum, anterior thalamic radiation), which were associated with pain catastrophizing, as well as sensorimotor tracts (corticospinal tract). By identifying alterations in the biologically informative WM microstructural metrics orientation dispersion and neurite density, our findings provide important and novel mechanistic insights for understanding the pathophysiology underlying chronic pain. Taken together, the data support alterations in fiber organization as a meaningful characteristic, contributing process to the chronic pain state.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3