Real-time Monitoring of Propofol in Expired Air in Humans Undergoing Total Intravenous Anesthesia

Author:

Hornuss Cyrill1,Praun Siegfried2,Villinger Johannes3,Dornauer Albert2,Moehnle Patrick4,Dolch Michael4,Weninger Ernst4,Chouker Alexander4,Feil Christian5,Briegel Josef6,Thiel Manfred6,Schelling Gustav6

Affiliation:

1. Resident.

2. Staff Scientist.

3. Senior Scientist, V&F Medical Development GmbH, Absam, Austria.

4. Staff Anesthesiologist.

5. Medical Student, University of Munich, Munich, Germany.

6. Professor, Department of Anaesthesiology.

Abstract

Background The physicochemical properties of propofol could allow diffusion across the alveolocapillary membrane and a measurable degree of pulmonary propofol elimination. The authors tested this hypothesis and showed that propofol can be quantified in expiratory air and that propofol breath concentrations reflect blood concentrations. This could allow real-time monitoring of relative changes in the propofol concentration in arterial blood during total intravenous anesthesia. Methods The authors measured gas-phase propofol using a mass spectrometry system based on ion-molecule reactions coupled with quadrupole mass spectrometry which provides a highly sensitive method for on-line and off-line measurements of organic and inorganic compounds in gases. In a first sequence of experiments, the authors sampled blood from neurosurgery patients undergoing total intravenous anesthesia and performed propofol headspace determination above the blood sample using an auto-sampler connected to the mass spectrometry system. In a second set of experiments, the mass spectrometry system was connected directly to neurosurgery patients undergoing target-controlled infusion via a T piece inserted between the endotracheal tube and the Y connector of the anesthesia machine, and end-expiratory propofol concentrations were measured on-line. Results A close correlation between propofol whole blood concentration and propofol headspace was found (range of Pearson r, 0.846-0.957; P < 0.01; n = 6). End-expiratory propofol signals mirrored whole blood values with close intraindividual correlations between both parameters (range of Pearson r, 0.784-0.985; n = 11). Conclusion Ion-molecule reaction mass spectrometry may allow the continuous and noninvasive monitoring of expiratory propofol levels in patients undergoing general anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3