Differential Contribution of Sodium Channel Subtypes to Action Potential Generation in Unmyelinated Human C-type Nerve Fibers

Author:

Lang Philip M.1,Hilmer Verena B.2,Grafe Peter3

Affiliation:

1. Research Associate and Consultant in Anesthesiology, Department of Anesthesiology.

2. Research Associate.

3. Professor, Department of Physiology.

Abstract

Background Multiple voltage-dependent sodium channels (Na(v)) contribute to action potentials and excitability of primary nociceptive neurons. The aim of the current study was to characterize subtypes of Na(v) that contribute to action potential generation in peripheral unmyelinated human C-type nerve fibers. Methods Registration of C-fiber compound action potentials and determination of membrane threshold was performed by a computerized threshold tracking program. Nerve fibers were stimulated with a 1-ms current pulse either alone or after a small ramp current lasting 300 ms. Results Compound C-fiber action potentials elicited by supramaximal 1-ms current pulses were rather resistant to application of tetrodotoxin (30-90 nM). However, the same concentrations of tetrodotoxin strongly reduced the peak height and elevated membrane threshold of action potentials evoked at the end of a 300-ms current ramp. A similar effect was observed during application of lidocaine and mexiletine (50 microM each). Conclusions These data indicate that more than one type of Na(v) contributes to the generation of action potentials in unmyelinated human C-type nerve fibers. The peak height of an action potential produced by a short electrical impulse is dependent on the activation of tetrodotoxin-resistant ion channels. In contrast, membrane threshold and action potential peak height at the end of a slow membrane depolarization are regulated by a subtype of Na(v) with high sensitivity to low concentrations of tetrodotoxin, lidocaine, and mexiletine. The electrophysiologic and pharmacologic characteristics may indicate the functional activity of the Na(v) 1.7 subtype of voltage-dependent sodium channels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference43 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3