Kidney stones, hypercalciuria, and recent insights into proximal tubule calcium reabsorption

Author:

Alexander R. Todd123

Affiliation:

1. Department of Pediatrics

2. Department of Physiology, University of Alberta

3. The Women's & Children's Health Research Institute, Edmonton, Alberta, Canada

Abstract

Purpose of review Most kidney stones are composed of calcium, and the greatest risk factor for kidney stone formation is hypercalciuria. Patients who form kidney stones often have reduced calcium reabsorption from the proximal tubule, and increasing this reabsorption is a goal of some dietary and pharmacological treatment strategies to prevent kidney stone recurrence. However, until recently, little was known about the molecular mechanism that mediates calcium reabsorption from the proximal tubule. This review summarizes newly uncovered key insights and discusses how they may inform the treatment of kidney stone formers. Recent findings Studies examining claudin-2 and claudin-12 single and double knockout mice, combined with cell culture models, support complementary independent roles for these tight junction proteins in contributing paracellular calcium permeability to the proximal tubule. Moreover, a family with a coding variation in claudin-2 causing hypercalciuria and kidney stones have been reported, and reanalysis of Genome Wide Association Study (GWAS) data demonstrates an association between noncoding variations in CLDN2 and kidney stone formation. Summary The current work begins to delineate the molecular mechanisms whereby calcium is reabsorbed from the proximal tubule and suggests a role for altered claudin-2 mediated calcium reabsorption in the pathogenesis of hypercalciuria and kidney stone formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Nephrology,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3