Protein Kinase C–Dependent Increase in Reactive Oxygen Species (ROS) Production in Vascular Tissues of Diabetes: Role of Vascular NAD(P)H Oxidase

Author:

Inoguchi Toyoshi,Sonta Toshiyo,Tsubouchi Hirotaka,Etoh Takashi,Kakimoto Maiko,Sonoda Noriyuki,Sato Naoichi,Sekiguchi Naotaka,Kobayashi Kunihisa,Sumimoto Hideki,Utsumi Hideo,Nawata Hajime

Abstract

ABSTRACT. Hyperglycemia seems to be an important causative factor in the development of micro- and macrovascular complications in patients with diabetes. Several hypotheses have been proposed to explain the adverse effects of hyperglycemia on vascular cells. Both protein kinase C (PKC) activation and oxidative stress theories have increasingly received attention in recent years. This article shows a PKC-dependent increase in oxidative stress in diabetic vascular tissues. High glucose level stimulated reactive oxygen species (ROS) production via a PKC-dependent activation of NAD(P)H oxidase in cultured aortic endothelial cells, smooth muscle cells, and renal mesangial cells. In addition, expression of NAD(P)H oxidase components were shown to be upregulated in vascular tissues and kidney from animal models of diabetes. Furthermore, several agents that were expected to block the mechanism of a PKC-dependent activation of NAD(P)H oxidase clearly inhibited the increased oxidative stress in diabetic animals, as assessed by in vivo electron spin resonance method. Taken together, these findings strongly suggest that the PKC-dependent activation of NAD(P)H oxidase may be an essential mechanism responsible for increased oxidative stress in diabetes. E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 374 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3