Localization and Regulation of the ATP6V0A4 (a4) Vacuolar H+-ATPase Subunit Defective in an Inherited Form of Distal Renal Tubular Acidosis

Author:

Stehberger Paul A.,Schulz Nicole,Finberg Karin E.,Karet Fiona E.,Giebisch Gerhard,Lifton Richard P.,Geibel John P.,Wagner Carsten A.

Abstract

ABSTRACT. Vacuolar-type H+-ATPases (V-H+-ATPases) are the major H+-secreting protein in the distal portion of the nephron and are involved in net H+secretion (bicarbonate generation) or H+reabsorption (net bicarbonate secretion). In addition, V-H+-ATPases are involved in HCO3reabsorption in the proximal tubule and distal tubule. V-H+-ATPases consist of at least 13 subunits, the functions of which have not all been elucidated. Mutations in the accessory ATP6V0A4 (a4 isoform) subunit have recently been shown to cause an inherited form of distal renal tubular acidosis in humans. Here, the localization of this subunit in human and mouse kidney was studied and the regulation of expression and localization of this subunit in mouse kidney in response to acid-base and electrolyte intake was investigated. Reverse transcription-PCR on dissected mouse nephron segments amplified a4-specific transcripts in proximal tubule, loop of Henle, distal convoluted tubule, and cortical and medullary collecting duct. a4 protein was localized by immunohistochemistry to the apical compartment of the proximal tubule (S1/S2 segment), the loop of Henle, the intercalated cells of the distal convoluted tubule, the connecting segment, and all intercalated cells of the entire collecting duct in human and mouse kidney. All types of intercalated cells expressed a4. NH4Cl or NaHCO3loading for 24 h, 48 h, or 7 d as well as K+depletion for 7 and 14 d had no influence on a4 protein expression levels in either cortex or medulla as determined by Western blotting. Immunohistochemistry, however, demonstrated a subcellular redistribution of a4 in response to the different stimuli. NH4Cl and K+depletion led to a pronounced apical staining in the connecting segment, cortical collecting duct, and outer medullary collecting duct, whereas NaHCO3loading caused a stronger bipolar staining in the cortical collecting duct. Taken together, these results demonstrate a4 expression in the proximal tubule, loop of Henle, distal tubule, and collecting duct and suggest that under conditions in which increased V-H+-ATPase activity is required, a4 is regulated by trafficking but not protein expression. This may allow for the rapid adaptation of V-H+-ATPase activity to altered acid-base intake to achieve systemic pH homeostasis. The significance of a4 expression in the proximal tubule in the context of distal renal tubular acidosis will require further clarification.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Reference50 articles.

1. Hamm LL, Alpern RJ: Cellular mechanisms of renal tubular acidification. In: The Kidney: Physiology and Pathophysiology, 3rd Ed., edited by Seldin DW, Giebisch G, Philadelphia: Lippincott Williams & Wilkins, 2000, pp 1935–1979

2. Brown D, Breton S: Structure, function and cellular distribution of the vacuolar H+-ATPase (H+V-ATPase/ proton pump). In: The Kidney: Physiology and Pathophysiology, 3rd Ed., edited by Seldin DW, Giebisch G, Philadelphia: Lippincott Williams & Wilkins, 2000, pp 171–191

3. Myosin light chain phosphorylation associated with contraction in arterial smooth muscle

4. Bicarbonate transport along the loop of Henle. I. Microperfusion studies of load and inhibitor sensitivity.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3