Milder Presentation of Recessive Polycystic Kidney Disease Requires Presence of Amino Acid Substitution Mutations

Author:

Furu Laszlo,Onuchic Luiz F.,Gharavi Ali,Hou Xiaoying,Esquivel Ernie L.,Nagasawa Yasuyuki,Bergmann Carsten,Senderek Jan,Avner Ellis,Zerres Klaus,Germino Gregory G.,Guay-Woodford Lisa M.,Somlo Stefan

Abstract

ABSTRACT. Autosomal recessive polycystic kidney disease (ARPKD; MIM 263200) is a hereditary and severe form of polycystic disease affecting the kidneys and biliary tract with an estimated incidence of 1 in 20,000 live births. The clinical spectrum is widely variable: up to 50% of affected neonates die shortly after birth, whereas others survive to adulthood. Mutations at a single locus, polycystic kidney and hepatic disease 1 (PKHD1), are responsible for all typical forms of ARPKD. Mutation detection was performed in PKHD1 by DHPLC in 85 affected, unrelated individuals. Seventy-four amplicons were amplified and analyzed from the PKHD1 genomic locus. Sequence variants were considered pathogenic when they were not observed in 160 control individuals (320 chromosomes). For purposes of genotype-phenotype comparisons, families were stratified by clinical presentation into two groups: the severe perinatal group, in which at least one affected child presented with perinatal disease and neonatal demise, and the less severe, nonperinatal group, in which none of the affected children died in the neonatal period. Forty-one mutations were found in 55 affected disease chromosomes; 32 of these mutations have not been reported previously. Mutations were distributed throughout the portions of gene encoding the predicted extracellular portion of the protein product. The most commonly encountered mutation, T36M, was found in 8 of 55 disease chromosomes. Amino acid substitutions were found to be more commonly associated with a nonlethal presentation, whereas chain terminating mutations were more commonly associated with neonatal demise (χ2 = 11.54, P = 0.003). All patients who survive the neonatal period have at least one amino acid substitution mutation, suggesting that such substitutions produce milder disease through production of partially functional protein products. The nature of the germline mutations in ARPKD plays a significant role in determining clinical outcome. E-mail: lgw@uab.edu

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Reference23 articles.

1. Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): Molecular genetics, clinical experience, and fetal morphology

2. Guay-Woodford LM: Autosomal recessive polycystic kidney disease: Clinical and genetic profiles. In: Polycystic Kidney Disease, edited by Watson ML, Torres VE, Oxford, Oxford University Press, 1996, pp 237–267

3. Autosomal recessive polycystic kidney disease in adulthood

4. Mapping of the gene for autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6p21–cen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3