Left Ventricular Hypertrophy Increases Susceptibility to Bupivacaine-induced Cardiotoxicity through Overexpression of Transient Receptor Potential Canonical Channels in Rats

Author:

Hino Hideki,Matsuura Tadashi,Kuno Miyuki,Hori Kotaro,Tsujikawa Shogo,Mori Takashi,Nishikawa Kiyonobu

Abstract

Background Local anesthetics, particularly potent long acting ones such as bupivacaine, can cause cardiotoxicity by inhibiting sodium ion channels; however, the impact of left ventricular hypertrophy on the cardiotoxicity and the underlying mechanisms remain undetermined. Transient receptor potential canonical (TRPC) channels are upregulated in left ventricular hypertrophy. Some transient receptor potential channel subtypes have been reported to pass relatively large cations, including protonated local anesthetics; this is known as the “pore phenomenon.” The authors hypothesized that bupivacaine-induced cardiotoxicity is more severe in left ventricular hypertrophy due to upregulated TRPC channels. Methods The authors used a modified transverse aortic constriction model as a left ventricular hypertrophy. Cardiotoxicity caused by bupivacaine was compared between sham and aortic constriction male rats, and the underlying mechanisms were investigated by recording sodium ion channel currents and immunocytochemistry of TRPC protein in cardiomyocytes. Results The time to cardiac arrest by bupivacaine was shorter in aortic constriction rats (n =11) than in sham rats (n = 12) (mean ± SD, 1,302 ± 324 s vs. 1,034 ± 211 s; P = 0.030), regardless of its lower plasma concentration. The half-maximal inhibitory concentrations of bupivacaine toward sodium ion currents were 4.5 and 4.3 μM, which decreased to 3.9 and 2.6 μM in sham and aortic constriction rats, respectively, upon coapplication of 1-oleoyl-2-acetyl-sn-glycerol, a TRPC3 channel activator. In both groups, sodium ion currents were unaffected by QX-314, a positively charged lidocaine derivative, that hardly permeates the cell membrane, but was significantly decreased with QX-314 and 1-oleoyl-2-acetyl-sn-glycerol coapplication (sham: 79 ± 10% of control; P = 0.004; aortic constriction: 47± 27% of control; P = 0.020; n = 5 cells per group). Effects of 1-oleoyl-2-acetyl-sn-glycerol were antagonized by a specific TRPC3 channel inhibitor. Conclusions Left ventricular hypertrophy exacerbated bupivacaine-induced cardiotoxicity, which could be a consequence of the “pore phenomenon” of TRPC3 channels upregulated in left ventricular hypertrophy. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3